碳四植物的概念和特点
碳四植物常写作C4植物。生长过程中从空气中吸收二氧化碳首先合成苹果酸或天门冬氨酸等含四个碳原子化合物的植物,如玉米、甘蔗等。而小麦、水稻等作物先合成磷甘油酸等三碳原子分子,为C3植物。C4植物较之C3植物具有生长能力强、二氧化碳利用率高、需水分量少等许多优点。禾本科经济植物中约有300种属C4植物。用杂交法或细胞融合法培育杂交水稻等,使其具有跟C4植物相近的二氧化碳摄取能力的育种工作一直在进行。培育近似C4植物的新品种,对全世界粮食状况的改善具有重大意义。......阅读全文
碳四植物的概念和特点
碳四植物常写作C4植物。生长过程中从空气中吸收二氧化碳首先合成苹果酸或天门冬氨酸等含四个碳原子化合物的植物,如玉米、甘蔗等。而小麦、水稻等作物先合成磷甘油酸等三碳原子分子,为C3植物。C4植物较之C3植物具有生长能力强、二氧化碳利用率高、需水分量少等许多优点。禾本科经济植物中约有300种属C4植物。
碳四植物和碳三植物的特点比较
碳四植物常写作C4植物。生长过程中从空气中吸收二氧化碳首先合成苹果酸或天门冬氨酸等含四个碳原子化合物的植物,如玉米、甘蔗等。而小麦、水稻等作物先合成磷甘油酸等三碳原子分子,为C3植物。C4植物较之C3植物具有生长能力强、二氧化碳利用率高、需水分量少等许多优点。禾本科经济植物中约有300种属C4植物。
碳三植物的概念和特点
CO2同化的最初产物是光合碳循环中的三碳化合物3-磷酸甘油酸的植物,称为碳三植物(C3植物),有如小麦、大豆、烟草、棉花等。C3植物比C4植物CO2补偿点高,所以C3植物在CO2含量低的情况下存活率比C4植物来的低。相比之下,C3植物细胞分工较C4植物不明确,CO2利用效率更低,在一定程度上可认为C
碳四植物的结构特点
许多四碳植物在解剖上有一种特殊结构,即在维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。由叶肉细胞和维管束鞘细胞整齐排列的双环结构,形象地称为“花环形”结构。两种不同类型的细胞各具不同的叶绿体。围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体
碳四和碳三植物的区别
已经发现的四碳植物约有2000种 ,广泛分布在植物的20个不同的科中。它们大都起源于热带。 因为四碳植物能利用强日光下产生的ATP推动PEP与CO2的结合,提高强光、高温下的光合速率,在干旱时可以部分地收缩气孔孔径,减少蒸腾失水,而光合速率降低的程度就相对较小,从而提高了水分在四碳植物中的利用率。这
碳四植物光合作用特点
在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮。这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶
碳四植物光合作用的特点
在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮。这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶
四碳植物进行四碳途径的反应过程
叶肉细胞里的磷酸烯醇式丙酮酸(PEP)经PEP羧化酶的作用,与CO2结合,形成苹果酸或天门冬氨酸。这些四碳双羧酸转移到鞘细胞里,通过脱羧酶的作用释放CO2,后者在鞘细胞叶绿体内经核酮糖二磷酸(RuBP)羧化酶作用,进入光合碳循环。这种由PEP形成四碳双羧酸,然后又脱羧释放CO2的代谢途径称为四碳途径
碳四植物和碳三植物哪个光合作用的效率更高?
一般植物中,二氧化碳同化时固定的第一个产物是具有3个碳原子的磷酸甘油酸,采用这种途径的植物称碳3植物,,如大豆、棉花、小麦和稻等。而有些植物中,二氧化碳固定的第一个产物是具有4个碳原子的双羧酸,采用这种途径的植物称碳4植物,,如玉米、高粱和甘蔗等。二氧化碳首先在叶肉细胞内被固定在四碳双羧酸中,然后被
什么是碳四植物?
CO2同化的最初产物不是光合碳循环中的三碳化合物3-磷酸甘油酸,而是四碳化合物苹果酸或天门冬氨酸的植物。又称C4植物。如玉米、甘蔗、高粱、苋菜等。而最初产物是3-磷酸甘油酸的植物则称为碳三植物(C3植物)。
碳四植物的产生过程
一般植物中,二氧化碳同化时固定的第一个产物是具有3个碳原子的磷酸甘油酸,采用这种途径的植物称碳3植物,,如大豆、棉花、小麦和稻等。而有些植物中,二氧化碳固定的第一个产物是具有4个碳原子的双羧酸,采用这种途径的植物称碳4植物,,如玉米、高粱和甘蔗等。二氧化碳首先在叶肉细胞内被固定在四碳双羧酸中,然后被
四碳植物是否具有特殊结构?
许多四碳植物在解剖上有一种特殊结构,即在维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。由叶肉细胞和维管束鞘细胞整齐排列的双环结构,形象地称为“花环形”结构。两种不同类型的细胞各具不同的叶绿体。围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体
钙库的概念和特点
中文名称钙库英文名称calcium store;calcium pool定 义细胞内一些具有钙离子贮存能力的细胞器(如内质网、肌质网以及液泡),其钙离子含量很高。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
基因的概念和特点
基因(遗传因子)是产生一条多肽链或功能RNA所需的全部核苷酸序列。基因支持着生命的基本构造和性能。储存着生命的种族、血型、孕育、生长、凋亡等过程的全部信息。环境和遗传的互相依赖,演绎着生命的繁衍、细胞分裂和蛋白质合成等重要生理过程。生物体的生、长、衰、病、老、死等一切生命现象都与基因有关。它也是决定
整倍体的概念和特点
在整倍体中体细胞含一个基本染色体组的个体叫一倍体(1x),含2 个基本染色体组的叫二倍体(2x),含3 个、4 个⋯⋯m 个基本染色体组的叫三倍体(3x)、四倍体(4x)⋯⋯m 倍体(mx)。体细胞中含3 个和3 个以上基本染色体组的个体叫多倍体。在多倍体中,若基本染色体组来自同一物种的,叫同源多倍
寒害的概念和特点
寒害,主要指热带、亚热带作物在冬季生育期间温度不低于0℃时,因气温降低引起作物生理机能障碍,导致减产甚至死亡的一种农业气象灾害。寒害多发生在我国华南地区,该地区冬季常遭受冷空气影响,造成强烈降温,对香蕉、荔枝、龙眼、甘蔗、橡胶等华南主要热带、亚热带经济作物危害严重。
宿主的概念和特点
宿主(host),也称为寄主,是指为寄生生物包括寄生虫、病毒等提供生存环境的生物。寄生生物通过寄居在宿主的体内或体表,从而获得营养,寄生生物往往损害宿主,使生病甚至死亡。宿主不只是被动地接受病原体的损害,而且主动产生抵制、中和外来侵袭的能力。如果宿主的抵抗力较强,病原体就难以侵入或侵入后迅速被排除或
特化的概念和特点
特化是由一般到特殊的生物进化方式。指物种适应于某一独特的生活环境、形成局部器官过于发达的一种特异适应,是分化式进化的特殊情况。
动物极和植物极的概念和差异
动物卵细胞富含原生质的一端称为动物极。由于卵内所含细胞质、细胞器、核糖体、卵黄、色素粒及糖原颗粒等物质的不均匀分布而表现出极性,分为动物极和植物极;营养物质(卵黄)较少、卵裂速度较快的一极称为动物极;细胞核偏位于动物极。与动物极相对的一端含较多的卵黄颗粒或卵黄小板、卵裂速度较慢的一极称植物极。由于卵
植物表型成像系统植物表型和植物表型组学的概念
植物表型分析是理解植物基因功能及环境效应的关键环节,随着植物功能基因组学和作物分子育种研究的深入,传统的表型观测已经成为制约其发展的主要瓶颈,而高通量的植物表型组分析技术和植物表型组学研究是解决这一困境的有效途径。虽然植物表型组分析正在成为国内外研究的热点,相关概念仍然较为模糊,阻碍了这一新兴学
布里渊散射的概念和特点
布里渊散射是布里渊于1922年提出的,可以研究气体,液体和固体中的声学振动,但作为一种实用的研究手段,是在激光出现以后才发展起来的。布里渊散射也属于拉曼效应,即光在介质中受到各种元激发的非弹性散射,其频率变化表征了元激发的能量。与拉曼散射不同的是,在布里渊散射中是研究能量较小的元激发,如声学声子和磁
布里渊散射的概念和特点
布里渊散射是布里渊于1922年提出的,可以研究气体,液体和固体中的声学振动,但作为一种实用的研究手段,是在激光出现以后才发展起来的。布里渊散射也属于拉曼效应,即光在介质中受到各种元激发的非弹性散射,其频率变化表征了元激发的能量。与拉曼散射不同的是,在布里渊散射中是研究能量较小的元激发,如声学声子和磁
晶闸管的概念和作用特点
今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种
干沉降的概念和特点
干沉降是大气气溶胶粒子和微量气体成分在没有降水时的沉降过程,是大气的一种自净作用。干沉降是由湍流扩散和重力沉降以及分子扩散等作用引起的,气溶胶粒子和微量气体成分被上述作用过程输送到地球表面,或者使它们落在植被和建筑物表面上,分子作用力使它们在物体表面上黏附,从而从大气中被清除。
成斑的概念和特点
中文名称成斑英文名称patching定 义当配体与细胞表面特定膜蛋白结合时,膜蛋白发生成簇聚集的现象。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
钙信号的概念和特点
中文名称钙信号英文名称calcium signal定 义当细胞受到各种刺激时,导致细胞外钙离子进入细胞或胞内钙库钙离子释放,提高了细胞溶质内的游离钙离子浓度,成为引起细胞反应的信号。应用学科细胞生物学(一级学科),细胞通信与信号转导(二级学科)
有机合成的概念和特点
有机合成是指利用化学方法将单质、简单的无机物或简单的有机物制成比较复杂的有机物的过程。例如从氢气和二氧化碳制成甲醇;从乙炔制成氯乙烯,再经聚合而得聚氯乙烯树脂;从苯酚经一系列反应制得己二酸和己二胺,二者再缩合成聚酰胺66纤维。目前大多数的有机物如树脂、橡晈、纤维、染料、药物、燃料、香料等都可通过有机
级联反应的概念和特点
级联反应(cascade):它指在一系列连续事件中前面一种事件能激发后面一种事件的反应,其化学修饰为酶促反应以及放大效应。在转录调控中,例如:孢子的形成及噬菌体的溶解发育,它说明了调控分成几个阶段,在每个阶段,其中一条基因编码调节因子,而调节因子是另一阶段各种基因的表达所需要的。
胶体的概念和结构特点
胶体(Colloid)又称胶状分散体(colloidal dispersion)是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。分散质的一部分是由微小的粒子或液滴所组成,分散质粒子直径在1~100nm之间的分散系是胶体;胶体是一种分散质粒子直径介于粗分散体系和溶液之间的
固态电池的概念和特点
固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。