荧光分光光度计的基本原理

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光.不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱;,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。......阅读全文

荧光分光光度计的基本原理

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量

荧光分光光度计的基本原理

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量

荧光分光光度计的基本原理

  由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。  物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部

荧光分光光度计的基本原理

  由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。  物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部

荧光分光光度计的基本原理

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量

荧光分光光度计基本原理

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量

荧光分光光度计基本原理

一、荧光的产生构成物质的分子中存在电子,一般情况下电子总处在能量最低的能级(基态),分子中同一轨道中的两个电子白旋方向相反,净电子自旋为0,以S=0表示,此时称分子处于单重态,基态单重态以S1表示;分子吸收能量后受激的电子跃迁进入较高能级,若在跃迁过程中电子的自旋方向不改变,此时认为分子处于激发的单

荧光分光光度计的基本原理介绍

由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量

简述荧光分光光度计的基本原理

  1、荧光分光光度计的原理—由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。  2、荧光分光光度计的原理—物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些

日立荧光分光光度计的基本原理

日立荧光分光光度计的基本原理  基本原理  日立荧光分光光度计由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。  物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态,

荧光分光光度计的基本原理和特点

   荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。 荧光分光光度计的基本原理: 由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的

荧光分光光度计的基本原理和特点

  采用双单色器、带激发光监视系统的比例双光路设计,150W滨松高品质氙灯、采用1200线/mm凹面光栅和大孔径非球面反射镜分光系统,体积小巧、结构紧凑、具有检测灵敏度高、扫描速度快、光谱测量范围宽、检测动态范围大和快速三维扫描等特点。全新、专业、人性化的软件设计包含多种分析功能。   荧光分光光

荧光分光光度计的功能及基本原理

荧光分光光度计的功能及基本原理荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。通过对这些参数的测定, 不但可以做一般的定量分析, 而且还可以推断分子在各种环

荧光分光光度计的基本原理和特点

采用双单色器、带激发光监视系统的比例双光路设计,150W滨松高品质氙灯、采用1200线/mm凹面光栅和大孔径非球面反射镜分光系统,体积小巧、结构紧凑、具有检测灵敏度高、扫描速度快、光谱测量范围宽、检测动态范围大和快速三维扫描等特点。全新、专业、人性化的软件设计包含多种分析功能。荧光分光光度计的基本原

荧光分光光度计的种类及基本原理

荧光分光光度计的种类及基本原理荧光分光光度计的发展经历了手控式荧光分光光度计,自动记录式荧光分光光度计,计算机控制式荧光分光光度计三个阶段;荧光分光光度计还可分为单光束式荧光分光光度计和双光束式荧光分光光度计两大系列。其他的还有低温激光Sh p ol’skill荧光分光光度计,配有寿命和相分辨测定的

荧光分光光度计基本原理及构成

荧光分光光度计基本原理由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回基态

荧光分光光度计基本原理及结构

基本原理        由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。 物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态, 这些处于激发态的分子是不稳定的,在返回

荧光分光光度计简述及基本原理

荧光分光光度计简述及基本原理荧光分光光度计是用于扫描液相荧光标记物所发出的荧光光谱的一种仪器。其能提供包括激发光谱、发射光谱以及荧光强度、量子产率、荧光寿命、荧光偏振等许多物理参数,从各个角度反映了分子的成键和结构情况。通过对这些参数的测定, 不但可以做一般的定量分析, 而且还可以推断分子在各种环境

荧光分光光度计的基本原理及种类详解

荧光分光光度计是一种常用的光度计产品,主要用于扫描液相荧光标记物所发出的荧光光谱,被广泛用于多个行业中。今天我们主要来介绍一下荧光分光光度计的基本原理及种类,希望可以帮助用户更好的应用产品。荧光分光光度计的基本原理由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧

荧光分光光度计的基本原理及种类详解

荧光分光光度计是一种常用的光度计产品,主要用于扫描液相荧光标记物所发出的荧光光谱,被广泛用于多个行业中。今天我们主要来介绍一下荧光分光光度计的基本原理及种类,希望可以帮助用户更好的应用产品。荧光分光光度计的基本原理由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧

荧光分光光度计基本原理及构成部分

 荧光分光光度计是一种常用的光度计产品类型,具有灵敏度高、选择性强、用样量少、方法简便、工作曲线线形范围宽等优点,被广泛用于多个领域中。今天我们主要来介绍一下荧光分光光度计基本原理及构成部分,希望可以帮助用户更好的应用产品。荧光分光光度计基本原理由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品

荧光分光光度计的基本原理、功能用途与分类

本文的主要目的是阐述荧光分光光度计 的基本原理与结构、功能特点与产品用途以及分类。只有充分了解了荧光分光光度计的这些基础知识,才能标准的使用和操作荧光风光光度计。点击查看光度计相关产品 与光度计比色皿产品荧光分光光度计 基本原理由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的

荧光光谱基本原理

   大多数物质中的电子在室温度下处于电子基态的最低能级上,当激发光的频率与电子的特征频率相一致时,电子会对这种光子产生吸收,然后从基态能级到激发态中各个能级上。由于处在激发态的电子不稳定,大多数电子会降落到第一电子激发态的最低能级上,之后,电子再由第一电子激发态的最低能级向基态的各个能级跃迁,在这

荧光分光光度计(分子荧光)

  1、基本原理   在室温下分子大都处在基态的最低振动能级,当受到光的照射时,便吸收与它的特征频率相一致的光线,其中某些电子由原来的基态能级跃迁到第一电子激发态或更高电子激发态中的各个不同振动能级,这就是在分光光度法中所述的吸光现象。跃迁到较高能级的分子,很快通过振动弛豫、内转换等方式释放能量后下

简述荧光免疫分析的基本原理

  作为免疫分析法的一种,FIA同样存在两种模式,即竞争型和夹心型。其中竞争型(以标记抗原的竞争型为例)的测定原理是基于未标记的抗原(Ag)和标记抗原(Ag-L)竞争结合有限的抗体(Ab)而实现的免疫分析法。检测时,Ab和Ag-L的浓度是固定的。当未标记的Ag加到Ab和Ag-L的免疫混合物中后,Ag

荧光分析法的基本原理

荧光分析法是材料元素分析的一种方法,它是利用一定波长的x射线照射材料,元素处于激发态,从而产激发出光子,形成一种荧光x射线。由于不同元素的激发态的能量大小不一样,所以产生的荧光x射线不同, 进而根据荧光x射线的波长和强度,得出元素的种类和含量。

X射线荧光分析的基本原理

  当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃

X射线荧光分析的基本原理

荧光,顾名思义就是在光的照射下发出的光。X射线荧光就是被分析样品在X射线照射下发出的X射线,它包含了被分析样品化学组成的信息,通过对上述X射线荧光的分析确定被测样品中各组份含量的仪器就是X射线荧光分析仪。从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自

X射线荧光分析的基本原理

  当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为10-12-10-14s,然后自发地由能量高的状态跃迁到能量低的状态。这个过程称为驰豫过程。驰豫过程既可以是非辐射跃迁,也可以是辐射跃迁。当较外层的电子跃

荧光分析法的基本原理

荧光分析法是材料元素分析的一种方法,它是利用一定波长的x射线照射材料,元素处于激发态,从而产激发出光子,形成一种荧光x射线。由于不同元素的激发态的能量大小不一样,所以产生的荧光x射线不同, 进而根据荧光x射线的波长和强度,得出元素的种类和含量。