RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以已经成为探索基因功能的重要研究手段。同时siRNA表达文库构建方法的建立,使得利用RNAi技术进行高通量筛选成为可能,对阐明信号转导通路、发现新的药物作用靶点有重要意义。......阅读全文

RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用

RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用

RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用

RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用

RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用

RNAi在探索基因功能中的应用

人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用

简述RNAi在探索基因功能中的应用

  人类基因组计划的完成标志着后基因组时代的来临。阐明人类基因组中功能基因表达产物的生物学作用对医学发展有着深远意义。在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以

RNAi在细胞培养中的应用

The protocols listed here are for Drosophila cells in 6 well plates and our pre-aliquoted 384 well plates. RNAi experiments may be done in other size

RNAi在植物学中的应用

Napoli等将1个查尔酮合成酶基因(chs)置于1个强启动子后导人矮牵牛(Petunia hybrida),试图加深花朵的紫颜色。结果部分花的颜色并非期待中的深紫色,而是形成了花斑状甚至白色,而且这种性状可以遗传。因为导入的基因和其同源的内源基因同时都被抑制,他们将这种现象命名为共抑制(co-su

RNAi技术在功能基因组中的应用

在功能基因组研究中,需要对特定基因进行功能丧失或降低突变,以确定其功能。由于RNAi具有高度的序列专一性,可以特异地使特定基因沉默,获得功能丧失或降低突变,因此RNAi可以作为一种强有力的研究工具,用于功能基因组的研究。将功能未知的基因的编码区(外显子)或启动子区,以反向重复的方式由同一启动子控制表

RNAi的应用(研究基因功能、信号传导通路和基因治疗)

研究基因功能的新工具已有研究表明RNAi能够在哺乳动物中灭活或降低特异性基因的表达,制作多种表型,而且抑制基因表达的时间可以随意控制在发育的任何阶段,产生类似基因敲除的效应。线虫和果蝇的全部基因组序列已测试完毕,发现大量未知功能的新基因,RNAi将大大促进对这些新基因功能的研究。与传统的基因敲除技术

Dharmacon文库在RNAi文库筛选的应用

1.什么是文库?――大幅提高研究效率的利器以往的实验室研究中,无论是寻找新基因的功能、探索已知基因致病的机制、解析复杂信号通路网络、探索疾病发生发展的机制,药物敏感性测试或者是寻找药物开发的新靶点,科研工作者们往往是围绕着潜在的单个目标基因进行改造,包括针对该基因的过表达、沉默、敲除、激活、修饰、突

RNAi在基因治疗领域中的应用

RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HⅣ-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位点,

RNAi在整形外科领域的应用前景

已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因

RNAi在基因治疗领域中的应用

RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HⅣ-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位点,

RNAi在整形外科领域的应用前景

已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因

RNAi在整形外科领域的应用前景

已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因

RNAi在整形外科领域的应用前景

已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因

RNAi在整形外科领域的应用前景

已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因

RNAi在基因治疗领域中的应用

RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HⅣ-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位点,

RNAi在整形外科领域的应用前景

已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤基因

RNAi在基因治疗领域中的应用

RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HⅣ-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位点,

RNAi在基因治疗领域中的应用

RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HⅣ-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位点,

使用Firefly技术探索液态活检在肺癌诊治中的应用

如今,肿瘤基因高通量测序技术在肿瘤靶向药物选择、耐药检测及微小病灶残留监测等方面,发挥着越来越显著的作用。对于非小细胞肺癌患者而言,EGFR/KRAS/BRAF突变以及ALK融合的检测具有重要的临床意义。 在本届ASCO年会上,上海交通大学附属胸科医院娄加陶教授等研究者的一项相关研究被收录。该研究运

RNAi技术的应用

5 RNAi技术的应用5.1 功能基因组和遗传学应用随着各种模式生物和人类基因组测序的完成,基因功能的研究远远落后于大量序列所提供的信息,研究和发现基因功能成为越来越紧迫的任务。长期以来,破坏基因结构或抑制基因表达是研究基因功能的重要方法,如常用的基因敲除技术( gene knock out) 。基

简述RNAi在整形外科领域的应用前景

  已证实N-Ras或BRAF的激活型突变是引发黑素瘤的主要病因,其中66%的病例为BRAF激酶作用域突变。而约80%的BRAF突变病例是因胸腺嘧啶突变为腺嘌呤造成第599位的缬氨酸突变为谷氨酸所致。使用RNAi技术剔除黑素瘤细胞的BRAF表达,不仅抑制了肿瘤细胞生长,而且减弱了其侵袭能力,为黑素瘤

概述RNAi在基因治疗领域中的应用

  RNAi作为一种高效的序列特异性基因剔除技术在传染性疾病和恶性肿瘤基因治疗领域发展极为迅速。在利用RNAi技术对HⅣ-1、乙型肝炎、丙型肝炎等进行基因治疗研究中发现,选择病毒基因组中与人类基因组无同源性的序列作为抑制序列可在抑制病毒复制的同时避免对正常组织的毒副作用。同时将抑制序列选择在特定的位

射频技术(RFID)在移动基站设备管理中的应用探索

   RFID(射频标签)技术正在零售、医药、运输等领域得到广泛应用,而且正在渗透到各传统行业中,目前物资设备管理是RFID技术增长飞快的领域之一。    许多企业通过将RFID标签与物资设备管理系统融合,可以自动、实时、智能地实现复杂的物资设备调动管理。在这样的背景下,移动通信公司正在尝试将RF

RNAi技术的应用特点

由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,(长度超过三十的dsRNA会引起干扰素毒性)所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的治疗领域。

RNAi的机理与应用

  RNAi 技术的机理与应用   关于 RNAi 技术   RNA 干扰(RNA interference,RNAi)是指在进化过程中高度保守的、由双链 RNA( double-stranded RNA,dsRNA) 诱发的、同源 mRNA 高效特异性降解的现象。   RNAi 受到追捧的