荧光原位杂交的技术应用

作为一种可视化特定DNA序列的分子细胞遗传学技术,荧光原位杂交技术目前被广泛应用于染色体畸变。如非整倍体、染色体重组。其基本流程包括探针标记、探针的变性、样本变性、杂交和荧光信号采集。荧光原位杂交技术在基因定性、定量,整合、表达等方面的研究中颇具优势,目前已经被广泛应用于遗传病诊断、病毒感染分析、产前诊断、肿瘤遗传学和基因组研究等许多领域,在临床检验、教学和研究等方面扮演着重要的角色。(一)基因(或DNA片段)染色体定位和基因图谱绘制目前应用的基因定位的主要方法是FISH。分离到的DNA序列直接通过FISH,同时采用多种颜色荧光素的标记探针,结合中期染色体和间期细胞方面的信息,可快速确定一-系列DNA序列之间的相互次序和距离,完成基因制图。用不同颜色炎光索标记2个不同的DNA链,而且他们在染色体上的距离大于1Mbp时,可以依据不同探针信号的排列关系分辨他们在染色体上的顺序。若采用5-溴脱氧尿嘧啶( 5-Burd )处理细胞,能够......阅读全文

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。荧光原位杂交技术是一种重

荧光原位杂交技术的背景

  对于利用rRNA的荧光原位杂交来说,如下原因可导致较低的荧光信号强度:  较低的细胞核糖体含量  较低的细胞周边的通透性  较低的目标序列可接触性(由于rRNA的折叠产生的构象,有些位置与rRNA分子内其他链或其他rRNA或蛋白紧密接触,从而使探针无法和目标序列杂交)  为检验细胞中的目标序列是

荧光原位杂交的技术原理

荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 荧光原位杂交技术是一种

荧光原位杂交技术的特点

  原位杂交的探针按标记分子类型分为放射性标记和非放射性标记。用同位素标记的放射性探针优势在于对制备样品的要求不高,可以通过延长曝光时间加强信号强度,故较灵敏。缺点是探针不稳定、自显影时间长、放射线的散射使得空间分辨率不高、及同位素操作较繁琐等。采用荧光标记系统则可克服这些不足,这就是FISH技术。

荧光原位杂交的技术特点

与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显

荧光原位杂交技术的原理

生命科学的发展,生物技术的进步使我们对疾病本质的认识不断地深入,也使我们拥有更多新的治疗方法和药物应对疾病的威胁。如何准确有效地利用这些新的治疗方法和药物治愈疾病是我们迫切需要研究的内容。如何对疾病进行正确的分型和诊断却是上述工作的基础。只有全面地把握病情,并在此基础上进行准确的判断和分析,才能为病

荧光原位杂交的技术优点

与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显

多彩色荧光原位杂交技术的特点、分类和应用

mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次FISH实验中完成。mFISH能同时检测多个基因,分辨复杂的染色体易位和微小缺失,区分间期细胞多倍体和超二倍体等。mFISH用激发

荧光原位杂交的荧光原位杂交

荧光原位杂交(fluorescence in situ hybridization,FISH)是在20世纪80年代末在放射性原位杂交技术的基础上发展起来的一种非放射性分子细胞遗传技术,以荧光标记取代同位素标记而形成的一种新的原位杂交方法。探针首先与某种介导分子(reporter molecule)结

荧光原位杂交技术的技术优势

与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显

原位杂交的技术应用

①细胞特异性mRNA转录的定位,可用于基因图谱,基因表达和基因组进化的研究;②感染组织中病毒DNA/RNA的检测和定位,如EB病毒mRNA、人类乳头状瘤病毒和巨细胞病毒DNA的检测;③癌基因、抑癌基因及各种功能基因在转录水平的表达及其变化的检测;④基因在染色体上的定位;⑤检测染色体的变化,如染色体数

原位杂交的技术应用

①细胞特异性mRNA转录的定位,可用于基因图谱,基因表达和基因组进化的研究;②感染组织中病毒DNA/RNA的检测和定位,如EB病毒mRNA、人类乳头状瘤病毒和巨细胞病毒DNA的检测;③癌基因、抑癌基因及各种功能基因在转录水平的表达及其变化的检测;④基因在染色体上的定位;⑤检测染色体的变化,如染色体数

荧光原位杂交技术的研究历史

荧光原位杂交技术问世于20世纪70年代后期。1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。

荧光原位杂交的技术发展

荧光原位杂交技术问世于20世纪70年代后期。1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。

​-荧光原位杂交的技术发展

(一)多彩色荧光原位杂交(multicolor fluorescence in situ hybridization,mFISH)mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次

荧光原位杂交的技术优势

与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:①FISH不需要放射性同位素标记,更经济安全。②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。④多色FISH通过在同一个核中显

荧光原位杂交的技术发展

荧光原位杂交技术问世于20世纪70年代后期。1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。

荧光原位杂交技术的发展历程

  1969年,Pardue和John等两个研究小组开始采用放射性标记DNA或28S RNA发明了原位杂交技术(ISH)。尽管当时原位杂交技术已经具有较高的特异性和灵敏度,但鉴于放射性同位素自身特性的局限,如安全性、空间分辨率低、不稳定性等问题,这项技术仅限于实验室研究方面的应用。  1986年科研

简述荧光原位杂交的技术原理

  荧光原位杂交技术技术原理是将荧光素直接或间接标记的核酸探针[或生物素、地高辛、dinit rophenyl(I)NP)、aminoacetylAAFfluorine(AAF)等标记的核酸探针与待测样本中的核酸序列按照碱基互补配对的原则进行杂交,经洗涤后直接在荧光显微镜下观察。 [2]  荧光原位

​-荧光原位杂交的技术发展

荧光原位杂交技术问世于20世纪70年代后期。1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。

FISH荧光原位杂交技术简介

FISH荧光原位杂交技术:1969年,Gall和Pardue等首次将同位素探针用于原位杂交实验,获得成功。1987年,染色体原位抑制杂交法的创建,使FISH技术得以迅速发展。随后,Cremer等用生物素和汞或氨基乙酰荧光素等非放射性物质标记探针,创立了双色FISH荧光原位杂交技术 。1990年,Ne

荧光原位杂交技术实验心得

荧光原位杂交技术( fluorescence in situ Hybridization,FISH)是一种非放射性原位杂交方法,用特殊的荧光素标记核酸探针,在细胞或组织切片标本上进行杂交,以检测细胞内 DNA 或 RNA 特定序列存在与否。FISH 实验操作与用非荧光标记探针的原位杂交基本相似。在组

FISH荧光原位杂交技术简介

FISH荧光原位杂交技术:1969年,Gall和Pardue等首次将同位素探针用于原位杂交实验,获得成功。1987年,染色体原位抑制杂交法的创建,使FISH技术得以迅速发展。随后,Cremer等用生物素和汞或氨基乙酰荧光素等非放射性物质标记探针,创立了双色FISH荧光原位杂交技术 。1990年,

DNA纤维荧光原位杂交技术的技术特点

FISH的分辨率取决于载体DNA的浓缩程度,如何提高分辨率一直是一个重要课题。Wiegant等和Heng等首先利用化学方法对染色体进行线性化,再以此为载体进行FISH,使其分辨率显著提高,这就是最初的纤维-FISH。纤维-FISH应用各种不同技术,将待研究细胞的全部遗传物质即DNA在载玻片上制备出D

荧光原位杂交体植入的应用实验

荧光原位杂交体植入的应用实验PBl、PB2 标本的制备 1.在 50 mL 培养瓶准备新鲜固定液(甲醇:冰乙酸=3:1),在冰柜中保存备用。 2.将毛细吸管在小型喷灯的火焰上拉出内径约 50pm 的尖,内径太大可能会丢失极体。 3.加几滴固定液再处理预先处理过的玻片以清除可能存在的油脂或灰尘,用无尘

荧光原位杂交技术(FISH)在疾病分型诊断中的应用

 生命科学的发展,生物技术的进步使我们对疾病本质的认识不断地深入,也使我们拥有更多新的治疗方法和药物应对疾病的威胁。如何准确有效地利用这些新的治疗方法和药物治愈疾病是我们迫切需要研究的内容。如何对疾病进行正确的分型和诊断却是上述工作的基础。只有全面地把握病情,并在此基础上进行准确的判断和分析,才能为

关于荧光原位杂交技术在血液肿瘤学方面的应用

  临床上对血液肿瘤的FISH检测主要集中在:染色体异位形成的融合基因的检测,如ber/abl 易位DNA探针、t( 15; 17)易位DNA探针和t( 18; 21 )易位DNA探针等;基因缺失检测可以发现一些关键基因的缺失,有助于疾病的诊断及预后判断;使用荧光原位杂交技术可对微小残留病灶进行检测

荧光原位杂交技术的基本信息

中文名荧光原位杂交外文名Fluorescence in situ hybridization简    写FISH工    程DNA分子杂交材    料荧光标记标志物特异寡聚核苷酸片段目    的检测该特异微生物种群的存在

简述荧光原位杂交的技术发展

  荧光原位杂交技术问世于20世纪70年代后期。  1977年,荧光标记的抗体被应用于识别特异性DNA—RNA杂交I I。  1980年,J.G.Baunlan等将应用化学偶联的方法将荧光素结合到RNA探针上用于直接快速的特异性靶序列检测。

关于荧光原位杂交的技术优点介绍

  与其他原位杂交技术相比,荧光原位杂交具有很多优点,主要体现在:  ①FISH不需要放射性同位素标记,更经济安全。  ②FISH的实验周期短,探针稳定性高,特异性好,定位准确,能迅速得到结果。  ③FISH通过多次免疫化学反应,使杂交信号增强,灵敏度提高,其灵敏度与放射性探针相当。  ④多色FIS