液体闪烁计数器的仪器的功能介绍
液体闪烁计数器(liquid scintillation counter)是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。......阅读全文
液体闪烁计数器的仪器的功能介绍
液体闪烁计数器(liquid scintillation counter)是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。
液体闪烁计数器的仪器原理
其基本原理是依据射线与物质相互作用产生荧光效应。首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增,在PM阳极上收集到好多光电子,以脉冲信号形式输送出去。将信号符合、放大、分
液体闪烁计数器的主要功能介绍
液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C计数效率大于95%。液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应
液体闪烁计数器-仪器原理简介
液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。其基本原理是依据射线与物质相互作用产生荧光效应。首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增,
液体闪烁计数器的应用介绍
液体闪烁计数器主要用于探测一些低能β核素示踪原子的放射性样品,已广泛的应用于工业、农业、生物医学、分子生物学、环境科学、考古与地质构造等领域科研工作中的核素示踪与核辐射测量。主要包括以下几个方面:1 、细胞与分子生物学主要利用3H、14C、32P等放射性核素进行体内或体外标记,研究细胞生物体内核酸、
液体闪烁计数器的相关介绍
液体闪烁计数所用的闪烁体是液态,即将闪烁体溶解在适当的溶液中,配制成为闪烁液,并将待测放射性物质放在闪烁液中进行测量。应用液体闪烁计数可达到4π立体角的优越几何测量条件,而且源的自吸收也可以忽略,对于能量低,射程短、易被空气和其它物质吸收的α射线和低能β射线(如³H和C-14),有较高的
液体闪烁计数器应用介绍
液体闪烁计数器主要用于探测一些低能β核素示踪原子的放射性样品,目前已广泛的应用于工业、农业、生物医学、分子生物学、环境科学、考古与地质构造等领域科研工作中的核素示踪与核辐射测量。主要包括以下几个方面:1、细胞与分子生物学主要利用3H、14C、32P等放射性核素进行体内或体外标记,研究细胞生物体内核酸
液体闪烁计数器的主要功能
液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C计数效率大于95%。1 、常用放射性核素测定液闪计数器可用于3H、14C、32P、33P
液体闪烁计数器的主要功能
液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C计数效率大于95%。1 、常用放射性核素测定液闪计数器可用于3H、14C、32P、33P
液体闪烁计数器主要功能
液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C计数效率大于95%。 1 常用放射性核素测定 液闪计数器可用于3H、14C、32P、3
液体闪烁计数器的功用
液体闪烁计数器(liquid scintillation counter)是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。
液体闪烁计数器的应用
液体闪烁计数器主要用于探测一些低能β核素示踪原子的放射性样品,已广泛的应用于工业、农业、生物医学、分子生物学、环境科学、考古与地质构造等领域科研工作中的核素示踪与核辐射测量。主要包括以下几个方面:1 、细胞与分子生物学主要利用3H、14C、32P等放射性核素进行体内或体外标记,研究细胞生物体内核酸、
液体闪烁计数仪的功能介绍
液体闪烁计数仪,是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。
液体闪烁计数器的主要应用
液体闪烁计数器主要用于探测一些低能β核素示踪原子的放射性样品,目前已广泛的应用于工业、农业、生物医学、分子生物学、环境科学、考古与地质构造等领域科研工作中的核素示踪与核辐射测量。主要包括以下几个方面: 1 细胞与分子生物学 主要利用、14C、P等放射性核素进行体内或体外标记,研究细胞生物体内
液体闪烁计数器原理介绍及应用
1. 原理简介 液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。其基本原理是依据射线与物质相互作用产生荧光效应。首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转
JL35FJ全自动液体闪烁计数器仪器性能介绍
JL35-FJ全自动液体闪烁计数器仪器性能 全自动液体闪烁计数器用于3H和14C等低能射线测量,广泛应用于环保、卫生防疫、水文、地质、考古、海洋等领域。 主要技术性能 对3H探测效率:50% 本底计数:40cpm 对14C探测效率:90% 本底计数:60cpm
液体闪烁计数器的原理及其应用
仪器原理简介液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。其基本原理是依据射线与物质相互作用产生荧光效应。首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转换为光电子,再
液体闪烁仪的功能作用
用来进行生物、医药、生命科学、环境检测方面比较棘手的放射性检测检测放射性污染物测定如222Rn等元素的α射线量3H、14C、32P放射性标记用于诊断研究的125I放射性免疫测定ATP发光检测、基因检测、免疫、毒理学检测
全自动液体闪烁计数器的技术性能介绍
全自动液体闪烁计数器用于3H和14C等低能射线测量,广泛应用于环保、卫生防疫、水文、地质、考古、海洋等领域。 主要技术性能 对3H探测效率:50% 本底计数:40cpm 对14C探测效率:90% 本底计数:60cpm 多种工作方式:COM测量、D
液体闪烁光谱测定法的功能介绍
中文名称液体闪烁光谱测定法英文名称liquid scintillation spectrometry定 义基于磷光体或闪烁体等分子在吸收放射性粒子后,可将其能量以光的形式放出的性质来测量样品中放射性活性的技术。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
液体闪烁仪的主要功能介绍
用来进行生物、医药、生命科学、环境检测方面比较棘手的放射性检测检测放射性污染物测定如222Rn等元素的α射线量3H、14C、32P放射性标记用于诊断研究的125I放射性免疫测定ATP发光检测、基因检测、免疫、毒理学检测
液体闪烁计数闪烁液的相关介绍
在液体闪烁计数系统中,闪烁体又称荧光体,是闪烁液的溶质,它的很多,根据其荧光特性及作用,可分为两类,即第一闪烁和第二闪烁体。 ①第一闪烁体(初级闪烁体): 常用的第一闪烁体: Ⅰ对联三苯(TP):化学结构 它是最早使用的闪烁体之一。它的计数率高,价格比较便宜,但是,在低温或含水溶液介度不高
液体闪烁计数器的基本原理
液体闪烁计数器主要测定发生β核衰变的放射性核素,尤其对低能β更为有效。其基本原理是依据射线与物质相互作用产生荧光效应。首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增,在P
液体闪烁计数器的基本原理
基本原理是依据射线与物质相互作用产生荧光效应。首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递给闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增,在PM阳极上收集到好多光电子,以脉冲信号形式输送出去。将信号符合、放大、分析
实验室检测仪器液体闪烁计数器环境科学应用
利用标记示踪原子,研究有毒有害物质在环境体系的行为、去向和污染程度,包括用于重金属和农药等污染研究,以及在环境中水体、大气、土壤、居室内放射性天然背景值的监测。
你知道液体闪烁计数器的那些事吗?
QWP不锈钢潜水排污泵结构紧凑、重量轻、噪音小、环保节能成效显著,维修便捷,不用建泵房,放进水里就能工作,大大减少工程造价。应用于加工厂商业服务重度污染污水的排污、住宅小区的废水污水处理站、大城市污水处理站排水设备、人防系统排水管道站、水厂的给排水设备,医院门诊、酒店的工业废水、市政道路
实验室检测仪器液体闪烁计数器生物医学应用
利用放射免疫分析技术测定动物或人体内激素等微量活性物质,研究动物和人体体内内分泌和其它生理代谢行为。
实验室检测仪器液体闪烁计数器动植物营养应用
通过对大量或微量元素标记测定,研究动物、植物对营养元素、矿质元素的吸收利用率、生理代谢及其缺素症,为研究防治对策提供依据。
液体闪烁计数的探测装置介绍
在液体闪烁计数中引用非常灵敏的光电倍增管,对于探测穿透力低的α射线和低能量的β射线(如³H,C-14等)是极为重要的。使用一个光电倍增管的单光电倍增管液体闪烁计数器,由于电倍增管的热噪声及样品受光照射后发出的磷光,会有较高的本底计数,探测效率也较低。使用两个性能指标大致相同的光电倍增管,
液体闪烁计数的溶剂的相关介绍
从β源放射β射线到发射能被肖阴极接收的光妇的这一系列能量转移环节中,能量转移效率是很低的,只有少部分放射能量被利用来发射光子,其中放射源与溶剂之间,能量转移效率大约为5~10%。对溶剂的选择,主要视其对闪烁体的溶介度和将放射能转移给闪烁体的效率而定。如果以一定浓度的闪烁体在甲苯溶液中产生的脉冲高