光镊的简介

光镊是采用以芯片为基础的光子共振捕获技术的光阱,能对纳米至微米级的粒子进行操纵和捕获,利用NanoTweezer显微镜纳米光镊转换装置可把现有显微镜升级改造为光镊。注:NanoTweezer显微镜纳米光镊转换装置,是个显微镜附上装置。该装置使研究人员使用现有显微镜能够捕获、操纵纳米级微粒。......阅读全文

光镊的简介

光镊是采用以芯片为基础的光子共振捕获技术的光阱,能对纳米至微米级的粒子进行操纵和捕获,利用NanoTweezer显微镜纳米光镊转换装置可把现有显微镜升级改造为光镊。注:NanoTweezer显微镜纳米光镊转换装置,是个显微镜附上装置。该装置使研究人员使用现有显微镜能够捕获、操纵纳米级微粒。

光镊的定义

由于激光聚集可形成光阱,微小物体受光压而被束缚在光阱处,移动光束使微小物体随光阱移动,借此可在显微镜下对微小物体(如病毒、细菌以及细胞内的细胞器及细胞组分等)进行的移位或手术操作。光镊 ,又被称为单光束梯度力光阱,日常,我们用来挟持物体的镊子,都是有形物体,我们感觉到镊子的存在,然后通过镊子施加一定

光镊的原理

光镊技术基于光辐射压力与单光束梯度力光阱。光辐射压力光照射物体时,由于电磁波具有能量,也有动量,所以,在物体表面形成反射和吸收,同时会对表面形成压力作用,成为光压(光辐射压力)。通过激光的引进,使得光压效应在现实应用中有了很大的作用,特别是科学研究中。梯度力图1 单光束梯度力光阱

光镊的产生

最近,小编被我司的工程师小姐姐安利了一部据说是英国最长寿的科幻剧《神秘博士》(Doctor Who)。在2018年底刚刚回归的十一季中,新上任的第十三任Doctor造出了一件亮眼的神器——升级版音速起子,可谓是上可打外星人,下可开防盗门,有点无所不能的意思。 十三姨和她的起子而在咱们现实的物理学

什么是光镊?

光镊是采用以芯片为基础的光子共振捕获技术的光阱,能对纳米至微米级的粒子进行操纵和捕获,利用NanoTweezer显微镜纳米光镊转换装置可把现有显微镜升级改造为光镊。

光镊技术介绍

光镊技术是美国科学家于1986年发明的。光镊又称为单光束梯度光阱。简单的说.就是用一束高度汇聚的激光形成的三维势阱来俘获,操纵控制微小粒子。自诞生以来,光镊技术已经在微米尺度量级粒子的操纵控制,粒子间的相互作用等方面的研究中发挥了重要作用。1969年.Ashkin通过理论计算认为聚焦的激光能推动尺寸

光镊技术的应用

光镊的发明使光的力学效应走向实际应用,使人们在许多研究中从被动的观察转而成为主动的操控,同时光镊对于捕获微小粒子、测量微小作用力及生产微小器件等许多方面都有非常重要的意义,现主要从以下几个方面介绍光镊的研究及应用 。光镊在生物细胞上的应用研究对细胞操控的研究光镊操控细胞,可以高选择性的分选细胞或细胞

光镊技术的产生

光镊技术是美国科学家于1986年发明的。光镊又称为单光束梯度光阱。简单的说.就是用一束高度汇聚的激光形成的三维势阱来俘获,操纵控制微小粒子。自诞生以来,光镊技术已经在微米尺度量级粒子的操纵控制,粒子间的相互作用等方面的研究中发挥了重要作用。1969年.Ashkin通过理论计算认为聚焦的激光能推动尺寸

光镊的技术特点

光镊是对单光束梯度力光阱的形象的称呼,因为它与宏观的机械镊子具有相似的操控物体的功能。但与宏观的机械镊子相比,或者与传统的操控微纳米粒子的显微微针或原子力显微镜等相比,光镊具有不可比拟的优越性。光镊对微粒的操控是非接触的遥控方式,不会给对象造成机械损伤。这使得光镊在生物学研究特别是单细胞单分子研究领

光镊技术的原理

光镊技术基于光辐射压力与单光束梯度力光阱。光辐射压力光照射物体时,由于电磁波具有能量,也有动量,所以,在物体表面形成反射和吸收,同时会对表面形成压力作用,成为光压(光辐射压力)。通过激光的引进,使得光压效应在现实应用中有了很大的作用,特别是科学研究中。梯度力为了阐明梯度力的概念,以透明介质小球为例说

光镊技术的特点

光镊是对单光束梯度力光阱的形象的称呼,因为它与宏观的机械镊子具有相似的操控物体的功能。但与宏观的机械镊子相比,或者与传统的操控微纳米粒子的显微微针或原子力显微镜等相比,光镊具有不可比拟的优越性。光镊对微粒的操控是非接触的遥控方式,不会给对象造成机械损伤。这使得光镊在生物学研究特别是单细胞单分子研究领

新型光镊可捕获纳米颗粒

  光镊是一项正在飞速发展的技术,近年来,围绕光镊的新型应用层出不穷。光镊是用高度聚焦的激光束的焦点捕获粒子,从而使研究人员无需任何物理接触即可操纵物体的技术。目前,光镊已被用于捕获微米级的物体,然而研究人员日益渴望将光镊的应用扩展到纳米级粒子上去。由法国雷恩第一大学Janine Emile和Oli

光镊在生物细胞上的应用研究

对细胞操控的研究光镊操控细胞,可以高选择性的分选细胞或细胞器。目前,研究者已经建立了一套分选单条染色体的实验方法,为基因测序提供了更有效、更准确的方法。同时光镊还可用来测量细胞表面的电荷,因为细胞表与荷细胞的生长和细胞的凋亡有着非常密切的关系。对细胞应变能力的研究细胞内部的应变能力在通常情况下是很难

光镊在生物细胞上的应用研究

对细胞操控的研究光镊操控细胞,可以高选择性的分选细胞或细胞器 。目前,研究者已经建立了一套分选单条染色体的实验方法,为基因测序提供了更有效、更准确的方法。同时光镊还可用来测量细胞表面的电荷,因为细胞表与荷细胞的生长和细胞的凋亡有着非常密切的关系。对细胞应变能力的研究细胞内部的应变能力在通常情况下是很

光镊技术成功捕获活体动物细胞

  最新发现与创新   中国科学技术大学光学与光学工程系李银妹课题组,近日与上海交通大学魏勋斌教授合作,采用活体动物内的细胞,发展了动物体内细胞三维光学捕获技术。日前,国际著名学术期刊《自然·通讯》在线发表了这项研究成果,网站还以《医学研究:用光清除血管被堵塞的血管》为题对该研究工作进行报道。

光镊结合其他技术在生物上的应用研究

光镊结合其他技术在生物上的应用研究光镊由于其可对多个微小粒子进行复杂操控的特点以及飞速的发展,在其本身的技术研究受到越来越多关注的同时,也在不断开拓与其他领域技术结合的应用。

光镊在生物大分子上的应用研究

为了操纵一个生物大分子,往往将两个涂有肌浆球蛋白的聚苯乙烯小球黏在生物大分子的两端,称其为“手柄”,通过光镊捕获和操纵小球来达到操控生物大分子的目的。

光镊在生物大分子上的应用研究

为了操纵一个生物大分子,往往将两个涂有肌浆球蛋白的聚苯乙烯小球黏在生物大分子的两端,称其为“手柄”,通过光镊捕获和操纵小球来达到操控生物大分子的目的。

光镊结合其他技术在生物上的应用研究

光镊由于其可对多个微小粒子进行复杂操控的特点以及飞速的发展,在其本身的技术研究受到越来越多关注的同时,也在不断开拓与其他领域技术结合的应用。光镊与高空间分辨率技术的结合光镊与具有高空间分辨率本领的技术结合,使之具备了更精细的结构分辨能力和动态操控能力,目前,国际上Coirault. C等人已成功地将

光镊结合其他技术在生物上的应用研究

光镊结合其他技术在生物上的应用研究光镊由于其可对多个微小粒子进行复杂操控的特点以及飞速的发展,在其本身的技术研究受到越来越多关注的同时,也在不断开拓与其他领域技术结合的应用。 光镊与高空间分辨率技术的结合光镊与具有高空间分辨率本领的技术结合,使之具备了更精细的结构分辨能力和动态操控能力,目前,国际上

Tweez250si高速多光阱纳米光镊胶体操纵应用

手性向列胶体中可重构的打结和连接(2011 Science文章)对高聚物,大分子或者复杂材料中的缺陷线的打结或构建微尺度环是材料科学中富有挑战性的任务。通过使用激光镊作为一个显微操控工具,将手性向列液晶胶体中的微观拓扑缺陷线进行了任意复杂程度的打结和连接。所展示的所有结和连接包括霍普夫连接,大卫之星

光镊揭示肺黏液阻止纳米粒子通过机理

  德国科学家发现了肺黏液中特殊的凝胶结构,揭示了肺黏液阻止纳米粒子通过的原因。该研究加深了对呼吸系统疾病,尤其是感染的理解,将有助于吸入式新药的开发。相关成果发表于美国《国家科学院学报》上。   通常被称之为“痰”的黏液黏附在人体呼吸系统气道的内表面。这种黏性凝胶滋润肺部并防止小颗粒的渗入

BioRam®-激光共聚焦拉曼光镊显微镜

激光共聚焦拉曼光镊显微镜(BioRam®)基于拉曼散射和光阱捕获原理,创新地将共聚焦拉曼显微技术与光镊技术集成于一体,采用同一波长(785nm)的激光用于细胞的光阱捕获和拉曼信号激发,即可捕获细胞(即使是溶液中的悬浮细胞)的拉曼信号,又可对单细胞进行移动,实现细胞筛选。不同于常用的细胞分析方法,Bi

激光共聚焦拉曼光镊显微镜检测优势

检测优势单细胞水平检测和分析无需标记无侵入破坏无需大量样品  (100 到500个细胞即可)广泛适应性(贴壁细胞、悬浮细胞、组织切片、3D组织)等集成光镊(实现溶液中悬浮细胞/颗粒的分析)

物理所光镊驱动Janus粒子可控旋转研究取得进展

  上个世纪90年代起,随着纳米科技走进人们的视线,宏观世界中的器件走向微纳世界成为世界潮流。微型马达由于能广泛应用于微机电、微流、生物医药等领域而倍受青睐,而光场、电场和磁场常常作为动力来智能地操控微型马达。传统的光驱动的旋转微马达可以通过向具有双折射性质的物体传递角动量或向形状不对称的物体传递动

拉曼光镊技术成功实现单细胞无损识别与精确提取

  单细胞研究是当今生物医学领域备受关注的热点方向之一。传统生物学对细胞进行识别,往往需要借助染色等标记方式,导致细胞的损伤甚至死亡,限制对同一特定细胞的进一步分析和应用。近日,北京大学信息科学技术学院电子学系、纳米器件物理与化学教育部重点实验室叶安培教授课题组设计了一款生物芯片,并结合自主开发的“

X光的简介

  X射线的特征是波长非常短,频率很高。因此X射线必定是由于原子在能量 相差悬殊的两个能级之间的跃迁而产生的粒子流。  X射线(英语:X-ray),又被称为艾克斯射线、伦琴射线或X光,是一种波长范围在0.01纳米到10纳米之间(对应频率范围30 PHz到30EHz)的电磁辐射形式。X射线最初用于医学

腹部X光的简介

  腹部X光就是利用X光对腹部进行检查的一种医学诊断方法。X线诊断学(Diagnostic Roentgenology)是应用X线特性,通过人体后在透视荧光屏或照片上显示正常和异常的影像,结合基础医学和临床医学的知识,加以分析、归纳,作出诊断的一种科学。它不仅用以诊断疾病,还可以观察临床的治疗效果,

动态光散射的简介

DLS技术测量粒子粒径,具有准确、快速、可重复性好等优点,已经成为纳米科技中比较常规的一种表征方法。随着仪器的更新和数据处理技术的发展,现在的动态光散射仪器不仅具备测量粒径的功能,还具有测量Zeta电位、大分子的分子量等的能力。

Sci-Rep:科学家利用全息光镊技术对细胞微环境进行研究

  近日,刊登在国际杂志Scientific Reports上的一篇研究论文中,来自诺丁汉大学的研究人员通过研究构建了一种新型微观细胞,其可以帮助开发治疗疾病的新型疗法,这种微观细胞可以被操作,并且可以利用高强度的红外线来进行3D模式的研究。  文章中研究者发现如何利用全息光镊技术(Holograp