扫描隧道显微镜的功能介绍

扫描隧道显微镜 (Scanning Tunneling Microscope, 缩写为STM) 是一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重要的测量工具又是加工工具。......阅读全文

扫描隧道显微镜的功能介绍

扫描隧道显微镜 (Scanning Tunneling Microscope, 缩写为STM) 是一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重

扫描隧道显微镜的功能介绍

扫描隧道显微镜 (Scanning Tunneling Microscope, 缩写为STM) 是一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技既是重

扫描隧道显微镜的应用介绍

扫描STM工作时,探针将充分接近样品产生一高度空间限制的电子束,因此在成像工作时,STM具有极高的空间分辨率,可以进行科学观测。探伤及修补STM在对表面进行加工处理的过程中可实时对表面形貌进行成像,用来发现表面各种结构上的缺陷和损伤,并用表面淀积和刻蚀等方法建立或切断连线,以消除缺陷,达到修补的目的

扫描隧道显微镜的操作介绍

在线扫描控制①参数设置功能在扫描隧道显微镜实验中,计算机软件主要实现扫描时的一些基本参数的设定、调节,以及获得、显示并记录扫描所得数据图象等。计算机软件将通过计算机接口实现与电子设备间的协调共同工作。在线扫描控制中一些参数的设置功能如下:⑴“电流设定”的数值意味着恒电流模式中要保持的恒定电流,也代表

扫描隧道显微镜的工作模式介绍

恒电流模式利用一套电子反馈线路控制隧道电流 I ,使其保持恒定。再通过计算机系统控制针尖在样品表面扫描,即是使针尖沿x、y两个方向作二维运动。由于要控制隧道电流 I 不变,针尖与样品表面之间的局域高度也会保持不变,因而针尖就会随着样品表面的高低起伏而作相同的起伏运动,高度的信息也就由此反映出来。这就

扫描隧道显微镜的结构组成介绍

STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪80年代世界十大科技成就之一 。隧道针尖隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、

扫描隧道显微镜的工作模式介绍

恒电流模式利用一套电子反馈线路控制隧道电流 I ,使其保持恒定。再通过计算机系统控制针尖在样品表面扫描,即是使针尖沿x、y两个方向作二维运动。由于要控制隧道电流 I 不变,针尖与样品表面之间的局域高度也会保持不变,因而针尖就会随着样品表面的高低起伏而作相同的起伏运动,高度的信息也就由此反映出来。这就

扫描隧道显微镜的工作模式介绍

恒电流模式利用一套电子反馈线路控制隧道电流 I ,使其保持恒定。再通过计算机系统控制针尖在样品表面扫描,即是使针尖沿x、y两个方向作二维运动。由于要控制隧道电流 I 不变,针尖与样品表面之间的局域高度也会保持不变,因而针尖就会随着样品表面的高低起伏而作相同的起伏运动,高度的信息也就由此反映出来。这就

教学型扫描隧道显微镜具有哪些功能特点

扫描隧道显微镜具有很高的分辨率,可以观察、测量物体表面单个原子和分子的排列状态以及电子在表面的行为。可以用这么一个比喻来形容扫描隧道显微镜的分辨本领,用扫描隧道显微镜可以把一个原子放大到一个网球大小的尺寸,这相当于把一个网球放大到地球那么大。        教学型扫描隧道显微镜是扫描隧道显微镜的一种

扫描隧道显微镜隧道针尖的相关介绍

  隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图象的分辨率和图象的形状,而且也影响着测定的电子态。  针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那

扫描隧道显微镜的技术局限介绍

尽管STM有着EM、FIM等仪器所不能比拟的诸多优点,但由于仪器本身的工作方式所造成的局限性也是显而易见的。这主要表现在以下两个方面①STM的恒电流工作模式下,有时它对样品表面微粒之间的某些沟槽不能够准确探测,与此相关的分辨率较差。在恒高度工作方式下,从原理上这种局限性会有所改善。但只有采用非常尖锐

扫描隧道显微镜

   扫描隧道显微镜(scanning tunneling microscope,STM) 由Binnig等1981年发明,根据量子力学原理中的隧道效应而设计。当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧

扫描隧道显微镜的原理

  在扫描隧道显微镜(STM)观测样品表面的过程中,扫描探针的结构所起的作用是很重要的。如针尖的曲率半径是影响横向分辨率的关键因素;针尖的尺寸、形状及化学同一性不仅影响到STM图象的分辨率,而且还关系到电子结构的测量。因此,精确地观测描述针尖的几何形状与电子特性对于实验质量的评估有重要的参考价值。

扫描隧道显微镜的诞生

       自有人类文明以来,人们就一直为探索微观世界的奥秘而不懈的努力。1674年,荷兰人列文虎克发明了世界上第一台光学显微镜,并利用这台显微镜首次观察到了血红细胞,从而开始了人类使用仪器来研究微观世界的纪元。光学显微镜的出现,开阔了人们的观察视野,但是由于受到光波波长的限制,光学显微镜的观察范

扫描隧道显微镜(STM)

扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。

扫描隧道显微镜(STM)

扫描隧道显微镜(STM)主要针对一些特殊导电固体样品的形貌分析。可以达到原子量级的分辨率,但仅适合具有导电性的薄膜材料的形貌分析和表面原子结构分布分析,对纳米粉体材料不能分析。扫描隧道显微镜有原子量级的高分辨率,其平行和垂直于表面方向的分辨率分别为0.1 nm和0.01nm,即能够分辨出单个原子,因

扫描隧道显微镜简介

  扫描隧道显微镜 Scanning Tunneling Microscope 缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。  此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操纵原子,因此它在纳米科技

扫描隧道显微镜的工作原理

当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流。电流强度和针尖与样品间的距离有函数关系,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起电流不断

扫描隧道显微镜的工作模式

引发化学反应STM在场发射模式时,针尖与样品仍相当接近,此时用不很高的外加电压(最低可到10V左右)就可产生足够高的电场,电子在其作用下将穿越针尖的势垒向空间发射。这些电子具有一定的束流和能量,由于它们在空间运动的距离极小,至样品处来不及发散,故束径很小,一般为毫微米量级,所以可能在毫微米尺度上引起

扫描隧道显微镜的工作原理

当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流。电流强度和针尖与样品间的距离有函数关系,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起电流不断

扫描隧道显微镜的客观评价

  1981年随着扫描隧道显微镜(scanning tunneling microscope)的发明,物理学家作出了一个突破,它为在苏黎世(Zurich)的IBM实验室工作的科学家盖尔德·宾尼(Gerd Bining)和海因里希·罗雷尔(Heinrich Rohrer)赢得了诺贝尔奖。  突然间,物

扫描隧道显微镜的工作模式

引发化学反应STM在场发射模式时,针尖与样品仍相当接近,此时用不很高的外加电压(最低可到10V左右)就可产生足够高的电场,电子在其作用下将穿越针尖的势垒向空间发射。这些电子具有一定的束流和能量,由于它们在空间运动的距离极小,至样品处来不及发散,故束径很小,一般为毫微米量级,所以可能在毫微米尺度上引起

扫描隧道显微镜的结构简介

隧道针尖隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图像的分辨率和图像的形状,而且也影响着测定的电子态。针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那

扫描隧道显微镜的工作原理

当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子逸出,形成隧道电流。电流强度和针尖与样品间的距离有函数关系,当探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针与物质表面间的距离不断发生改变,从而引起电流不断

扫描隧道显微镜的发展历史

      17世纪,世界上第一台光学显微镜发明成功,并且利用这台显微镜,人类首次观察到了细胞的结构,从而开始了人类使用仪器研究微观世界的新时代。但是,由于受光波长的限制,光学显微镜的分辨率只能达到10^-6m~10^-7m。20世纪初,利用电子透镜使电子束聚焦的原理,成功的发明了电子显微镜,它的分

扫描隧道显微镜的实验原理

     扫描隧道显微镜利用量子力学里的隧道效应,探针与样品不接触,它们之间有一个势垒,因为有隧道效应,电子有一定几率穿过势垒形成电流。探针与样品之间的距离远,势垒就大,隧道电流就小,电流的大小转化为空间尺度,利用电脑分析就可以得到样品表面的图像。扫描探针一般采用直径小于1nm的细金属丝,被观测样品

扫描隧道显微镜具体应用

  扫描  STM工作时,探针将充分接近样品产生一高度空间限制的电子束,因此在成像工作时,STM具有极高的空间分辨率,可以进行科学观测。  探伤及修补  STM在对表面进行加工处理的过程中可实时对表面形貌进行成像,用来发现表面各种结构上的缺陷和损伤,并用表面淀积和刻蚀等方法建立或切断连线,以消除缺陷

扫描隧道显微镜是什么

扫描隧道显微镜是一种扫描探针显微术工具。扫描隧道显微镜ScanningTunnelingMicroscope缩写为STM。它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。此外,扫描隧道显微镜在低温下(4K)可以利用探针尖端精确操

扫描隧道显微镜工作原理

扫描隧道显微镜的工作原理:就如同一根唱针扫过一张唱片,一根探针慢慢地通过要被分析的材料(针尖极为尖锐,仅仅由一个原子组成)。一个小小的电荷被放置在探针上,一股电流从探针流出,通过整个材料,到底层表面。当探针通过单个的原子,流过探针的电流量便有所不同,这些变化被记录下来。电流在流过一个原子的时候有涨有

什么是扫描隧道显微镜

扫描隧道显微镜是根据量子力学中的隧道效应原理,通过探测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显微装置。根据量子力学原理,由于电子的隧道效应,金属中的电子并不完全局限于金属表面之内,电子云密度并不是在表面边界处突变为零。在金属表面以外,电子云密度呈指数衰减,衰减长度约为1nm。用一个极细