Antpedia LOGO WIKI资讯

研究阐明中国森林碳储量时空变化格局

近日,中国科学院华南植物园研究员闫俊华联合西南大学地理科学学院教授樊磊等科研人员,利用微波和光学遥感估算中国森林碳储量时空变化格局。相关研究发表于《国际遥感学报》(Journal of Remote Sensing)。中国科学院华南植物园鼎湖山站博士毕业生常中兵为第一作者。随着国家林业重点工程的实施,我国森林在过去几十年间扮演着碳汇功能,对区域和全球碳平衡贡献显著。在全球变化背景下,陆地生态系统,尤其是森林的固碳能力将继续发挥重要作用。为了满足我国森林碳汇的科学管理和应对我国“双碳”目标的科学评估,急需摸清我国森林碳储量空间分布和变化规律。针对该问题,研究人员基于自主研发的低频被动微波植被光学厚度(L-VOD)年际产品(具有时空连续性强、对茂密森林饱和点高的优势),首先评估了不同光学植被指数产品和微波植被光学厚度产品在中国区域对森林地上碳储量的监测能力,证明了微波植被光学厚度产品(尤其是L波段)在大尺度范围对地上碳储量监测的优势......阅读全文

碳四植物和碳三植物的特点比较

碳四植物常写作C4植物。生长过程中从空气中吸收二氧化碳首先合成苹果酸或天门冬氨酸等含四个碳原子化合物的植物,如玉米、甘蔗等。而小麦、水稻等作物先合成磷甘油酸等三碳原子分子,为C3植物。C4植物较之C3植物具有生长能力强、二氧化碳利用率高、需水分量少等许多优点。禾本科经济植物中约有300种属C4植物。

《自然》最新论文:植物和土壤或能互换储碳能力

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/455018.shtm 中新网北京3月25日电 (记者 孙自法)国际著名学术期刊《自然》最新发表一篇气候变化研究论文,研究人员开展一项针对100多个实验的分析研究显示,当二氧化碳水平升高导致植物生物量增

碳四和碳三植物的区别

已经发现的四碳植物约有2000种 ,广泛分布在植物的20个不同的科中。它们大都起源于热带。 因为四碳植物能利用强日光下产生的ATP推动PEP与CO2的结合,提高强光、高温下的光合速率,在干旱时可以部分地收缩气孔孔径,减少蒸腾失水,而光合速率降低的程度就相对较小,从而提高了水分在四碳植物中的利用率。这

储能行业深度研究报告:双碳驱动能源革命

 1、能源革命高歌猛进,开启储能万亿市场1.1、 碳中和下的新兴赛道,万亿市场冉冉升起根据国际能源署数据,在过去的三十年间,全球 55%的累计排碳来自电力行业,电力行 业 80%排碳来自燃煤发电,而随着全球电动化的推进,未来电力占二次能源比重将不断增加。因此减少燃煤发电比重的同时大力发展清洁能源成为

减污降碳协同为“双碳”目标增效

  日前,生态环境部等7部门印发的《减污降碳协同增效实施方案》(以下简称“方案”)中提出,到2030年,减污降碳协同能力显著提升,助力实现碳达峰目标。  减污、降碳该如何协同?哪些因素影响着减污降碳实践效果?在空气质量达标、“双碳”目标实现等多重压力,了解减污降碳协同效应、厘清实现路径具有重要现实意

多孔碳负极材料可有效储钾

  从河北科技大学获悉,该校经济管理学院材料学院王波教授带领的科研团队与北京航空航天大学王伟教授、剑桥大学郗凯博士等在钾离子电池多孔碳负极材料领域合作取得重要进展,相关研究近日在英国皇家化学学会RSC出版社旗下《材料化学学报》 上发表。图片来源于网络  钾离子电池因储量丰富、价格低廉且具有较低的氧化

四碳植物进行四碳途径的反应过程

叶肉细胞里的磷酸烯醇式丙酮酸(PEP)经PEP羧化酶的作用,与CO2结合,形成苹果酸或天门冬氨酸。这些四碳双羧酸转移到鞘细胞里,通过脱羧酶的作用释放CO2,后者在鞘细胞叶绿体内经核酮糖二磷酸(RuBP)羧化酶作用,进入光合碳循环。这种由PEP形成四碳双羧酸,然后又脱羧释放CO2的代谢途径称为四碳途径

不含碳全新超级电容问世储电性能超现有碳基材料

  美国麻省理工学院(MIT)官网10日公布了该校科学家发表在《自然·材料学》上的最新研究成果:他们研制出首个不含碳的超级电容,性能超过碳基材料,未来除用于电动汽车等新能源领域,还能用来生产可调节亮度的变色窗户和探测痕量化学物质的化学传感器。  超级电容因充放电速度快、功率密度高等因素成为能源储存系

什么是碳三植物?

CO2同化的最初产物是光合碳循环中的三碳化合物3-磷酸甘油酸的植物,称为碳三植物(C3植物),有如小麦、大豆、烟草、棉花等。C3植物比C4植物CO2补偿点高,所以C3植物在CO2含量低的情况下存活率比C4植物来的低。相比之下,C3植物细胞分工较C4植物不明确,CO2利用效率更低,在一定程度上可认为C

什么是碳四植物?

CO2同化的最初产物不是光合碳循环中的三碳化合物3-磷酸甘油酸,而是四碳化合物苹果酸或天门冬氨酸的植物。又称C4植物。如玉米、甘蔗、高粱、苋菜等。而最初产物是3-磷酸甘油酸的植物则称为碳三植物(C3植物)。

赋能“双碳” 生物合成技术助力绿色低碳

提到生物合成,你会想到什么?是生活在实验室中的微生物,还是出现在科幻电影中的“复制人”?其实,生物合成和我们的生活并没有那么遥远。生物合成能够合成淀粉、肉制品,具备服务于工业生产与农业转型的巨大潜力,甚至在减少二氧化碳排放、降低资源消耗等方面,也能发挥独特优势。  在“双碳”目标的指引之下,低碳生物

双碳之路,还有多远要走?

气候变化研究涵盖的学科发生了变化,能源与燃料、绿色与可持续科技、环境工程和环境研究等新兴学科研究占比则持续上升。呈现出科技支撑全球通往碳中和之路的趋势。  抓住新一轮科技革命和产业变革的历史性机遇,推动疫情后世界经济“绿色复苏”,汇聚起可持续发展的强大合力,已在中国社会形成广泛共识。  然而,我国是

碳四植物和碳三植物哪个光合作用的效率更高?

一般植物中,二氧化碳同化时固定的第一个产物是具有3个碳原子的磷酸甘油酸,采用这种途径的植物称碳3植物,,如大豆、棉花、小麦和稻等。而有些植物中,二氧化碳固定的第一个产物是具有4个碳原子的双羧酸,采用这种途径的植物称碳4植物,,如玉米、高粱和甘蔗等。二氧化碳首先在叶肉细胞内被固定在四碳双羧酸中,然后被

碳三植物的培养过程

也叫三碳植物。光合作用中同化二氧化碳的最初产物是三碳化合物3-磷酸甘油酸的植物;碳三植物的光呼吸高,二氧化碳补偿点高,而光合效率低;如小麦、水稻、大豆、棉花等大多数作物。二战后,美国加州大学伯克利分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2

碳三植物的发现过程

标记有C14的CO2很快就能转变成有机物。在几秒钟之内,层析纸上就出现放射性的斑点,经与已知化学物比较,斑点中的化学成份是三磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子,所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO

碳三植物的发现过程

标记有C14的CO2很快就能转变成有机物。在几秒钟之内,层析纸上就出现放射性的斑点,经与已知化学物比较,斑点中的化学成份是三磷酸甘油酸(3-phosphoglycerate,PGA),是糖酵解的中间体。这第一个被提取到的产物是一个三碳分子,所以将这种CO2固定途径称为C3途径,将通过这种途径固定CO

碳三植物的培养过程

也叫三碳植物。光合作用中同化二氧化碳的最初产物是三碳化合物3-磷酸甘油酸的植物;碳三植物的光呼吸高,二氧化碳补偿点高,而光合效率低;如小麦、水稻、大豆、棉花等大多数作物。二战后,美国加州大学伯克利分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2

碳四植物的结构特点

许多四碳植物在解剖上有一种特殊结构,即在维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。由叶肉细胞和维管束鞘细胞整齐排列的双环结构,形象地称为“花环形”结构。两种不同类型的细胞各具不同的叶绿体。围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体

从碳达峰到碳中和,准确理解双碳目标的深刻影响和内涵

2020年9月,习近平主席在第七十五届联合国大会一般性辩论上指出,中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和。党的二十大报告明确“积极稳妥推进碳达峰碳中和”“积极参与应对气候变化全球治理”。  作为生态文明的传播者、推

“双碳目标下如何实现低碳保供”研讨会举行

“十四五”是我国制定碳达峰行动方案、落实碳中和目标相关工作的关键期和攻坚期。11月24日,“新型电力系统底层逻辑思考——双碳目标下如何实现低碳保供”研讨会在京举行。与会专家从低碳保供的角度,思考当下构建新型电力系统中的困境,并从可再生能源的高比例发展出发,探讨平衡低碳转型和电力供应安全、促进新型电力

“双碳”目标下 专家共探如何加速迈向零碳中国

  2022零碳中国杭州峰会11月19日-20日在浙江杭州举行。院士专家、企业等齐聚,共议碳达峰碳中和目标下能源创新发展路径,共探绿色低碳发展道路,助推加速迈向“零碳中国”。  中国科学院院士、南方科技大学碳中和能源研究院院长赵天寿认为,直接利用太阳能是实现可持续发展的途径,可为未来提供足够、清洁、

促进生态碳汇倍增 筑牢“双碳”战略“压舱石"

“双碳”战略已成为新时代标志性的国家战略目标。它不单单是中国参与全球环境治理、应对气候变化的政治承诺,也是一场广泛而深刻的经济社会发展模式的系统性变革,更是一场新的科学技术革命。从全球范围看,“双碳”行动是中国为推动人类命运共同体构建而作出的郑重承诺。当前应对全球气候变化、保护生物多样性、实现可持续

基金委发布双碳目标下制氢储氢基础研究项目指南

为推动面向国家“碳中和”战略目标的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)工程与材料科学部拟设立“双碳”专项项目(一)——“双碳目标下制氢储氢基础研究”,针对低碳/零碳制氢和地下大容量储氢的核心科学问题,开展多学科交叉研究,为发展制氢脱碳的能源系统、可再生能源制氢途径、高效地下储氢

基金委发布双碳目标下制氢储氢基础研究项目指南

关于发布工程与材料科学部“双碳”专项项目(一)——“双碳目标下制氢储氢基础研究”项目指南的通知为推动面向国家“碳中和”战略目标的基础研究,国家自然科学基金委员会(以下简称自然科学基金委)工程与材料科学部拟设立“双碳”专项项目(一)——“双碳目标下制氢储氢基础研究”,针对低碳/零碳制氢和地下大容量储氢

培养“双碳”人才,他们这样做

每年暑假,200余支南京林业大学(以下简称“南林大”)研究生社会实践团队来到田间地头和厂房车间,进行生态政策宣讲、生态科技服务等,为当地百姓传播生态知识,带来生态理念。这个名为“美丽中国行”的常规活动,8年来共有近5000名研究生的足迹踏上了全国20多个省市。 自2020年9月我国提出“双碳”目

监测“城市呼吸”,助力“双碳”目标

“城市和人一样也会‘呼吸’,吸入氧气并呼出二氧化碳。”中国科学院院士、兰州大学西部生态安全省部共建协同创新中心主任黄建平在接受记者采访时说,“以往我们更多关注污染物和二氧化碳的排放,理所当然地认为氧气含量足够,但现在越来越多的证据表明,氧气已被过量消耗,这会给人类的生命健康带来巨大威胁。”  近日,

培养“双碳”人才,他们这样做

  每年暑假,200余支南京林业大学(以下简称“南林大”)研究生社会实践团队来到田间地头和厂房车间,进行生态政策宣讲、生态科技服务等,为当地百姓传播生态知识,带来生态理念。这个名为“美丽中国行”的常规活动,8年来共有近5000名研究生的足迹踏上了全国20多个省市。  自2020年9月我国提出“双碳”

数字化+双碳,施耐德如何实现“双转型”?

当下的产业界,数字化和低碳化转型正成为主流企业的共识。两者在时代的潮流中不断寻求融合。数字化技术帮助企业提高能源使用效率,同时实现碳排放的可信任、可追溯、可核查计量,而创新技术也在保证数据的采集、传输、留存和处理在各个环节的精准真实。在这个融合的过程中,如何帮助企业平衡经济效率和能源节约之间的关系?

助力“双碳”目标实现 我国首个企业碳资信评价标准发布

  2022中国国际碳交易大会上首个碳资信标准——《企业碳资信评价规范》正式发布。上海市生态环境局党组书记、局长程鹏,上海市金融监管局副局长林文杰,上海证券交易所副总经理刘逖,上海联交所党委书记、董事长周小全,上海联交所党委副书记、总裁余旭峰,上海联合产权交易所监事会主席倪耀明,上海环交所董事长赖晓

四碳植物是否具有特殊结构?

许多四碳植物在解剖上有一种特殊结构,即在维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。由叶肉细胞和维管束鞘细胞整齐排列的双环结构,形象地称为“花环形”结构。两种不同类型的细胞各具不同的叶绿体。围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体