赛默飞与中国地质科学的30年“情缘”
——访国家地质实验测试中心研究员 李冰教授 【导语】在中国960万平方公里的广袤国土上,有一批数十年专注于地质科学研究的奉献者,他们在国土资源勘察、地球化学、资源开采等众多与国计民生、经济发展息息相关的领域中作出了重要的贡献;而仪器技术是他/她们手中重要的科学工具。日前,我们有幸采访到国家地质实验室测试中心的李冰教授,她是全球第一代ICP-MS的使用者,是赛默飞第一台ICP-MS的应用者。李教授回顾了自己与赛默飞仪器技术结缘的30年“情缘”,以及近40年光谱质谱的工作经历和感悟。小编期待通过这份回顾的记录,向数十年从事分析测试的研究工作者们致敬,并对今天的研究工作者们有所启示…… 李冰教授与国家地质实验测试中心陈列的VG PQ ExCell电感耦合等离子体质谱 全球第一代ICP-MS的使用者 赛默飞ICP-MS在国内的首位用户 谈到自己的研究经历,用专注来形容李冰教授最为贴切。......阅读全文
2015年ICP光谱分析技术及应用培训班于12月07日厦门举办
中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训
地质行业26项新标准发布,9项与光、色、质三大谱仪有关
近日,自然资源部发布公告,《国土空间综合防灾规划编制规程》等26项行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,经2023年第7次部长办公会审议通过,现予批准、发布,自2024年1月1日起实施。 这26项标准中,涉及到分析测试的标准有14项,其中使用原子发射光谱的标准有5项,质
2017无机及同位素质谱学术报告精彩继续
分析测试百科网讯 2017年8月19日,2017年中国质谱学会无机及同位素质谱学术会议在四川成都开幕(相关报道:2017年中国质谱学会无机及同位素质谱学术会议成都开幕)。 上午的报告中,中国钢研科技集团有限公司王海舟院士、中国核工业建设集团公司研究员李金英、核工业北京地质研究院研究员郭冬发、清
赛默飞世尔科技成功参加首届全国药品质量分析论坛
赛默飞世尔科技近期作为科学仪器界的领军企业受邀参加了中国首届全国药品质量分析论坛,受到了与会者的高度关注。 首届全国药品质量分析论坛于2010年3月11日 -12日在河南省郑州市举行。论坛由中国药学会药物分析杂志编辑部主办,由国药励展展览有限责任公司和河南省食品药品检验所承办,国家食品药品
质谱的种类
质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类:有机质谱仪:由于应用特点不同又分为:①气相色谱-质谱联用仪(GC-MS)在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱 -飞行时间质谱仪,气相色谱-离子阱质谱仪等。②液相色谱-质谱联用仪
timsTOF-Pro质谱
布鲁克液质联用仪, 这致使近乎100%的占空比,使这种平行堆积和连续碎裂(PASEF)技术在酶促消化的蛋白质混合物的可重复纳流LC-MS分析中具有前所未有的性能。
AB质谱培训
是中文的质谱基础培训讲义。 AB质谱培训
质谱干扰离子
质谱仪种类很多,不同类型的质谱仪主要差别在于离子源。离子源的不同决定了对被测样品的不同要求,同时,所得信息也不同。质谱仪的分辨率同样十分重要,高分辨质谱仪可给出化合物的组成式,对于未知物定性至关重要。因此,在进行质谱分析前,要根据样品状况和分析要求选择合适的质谱仪。 目前,
飞行质谱技术
工作原理早期的飞行质谱为基质辅助激光解吸离子飞行质谱(maldi-tofms),基质使被分析蛋白质离子化,再由质谱测定。seldi把基质改为以色谱原理设计的蛋白芯片,增强了分离能力。芯片技术最初应用于DNA分析,称基因芯片。由于芯片整合了多种高技术:高度集成、超微化、计算机化、自动化,具有多样、快速
质谱解析程序
(一)解析分子离子区(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。(2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。(3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物
“嗜血”的质谱
卫生部临检中心组织的2018年第一次临床微生物室间质评已经结束,但关于流感嗜血杆菌和溶血嗜血杆菌的鉴定问题,在微信朋友圈里谈得正热烈 (见文《溶血 or 流感?傻傻分不清?》)[1]。主要是因为在这次质评中,生化鉴定仪和有些品牌的质谱仪的鉴定结果出错了。令小布自豪的是,布鲁克MALDI Biot
色谱质谱联用
色谱质谱联用中最典型的应用为气相色谱质谱法(Gas Chromatography-Mass Spectrometry, GC-MS)以及液相色谱质谱法(Liquid Chromatography-Mass Spectrometry)。 其优势在于通过色谱质谱的联用,解决了质谱中如果离子之间质量
质谱的解析
质谱的解析大致步骤如下: 确认分子离子峰,并由其求得相对分子质量和分子式;计算不饱和度。 找出主要的离子峰(一般指相对强度较大的离子峰),并记录这些离子峰的质荷比(m/z值)和相对强度。 对质谱中分子离子峰或其他碎片离子峰丢失的中型碎片的分析也有助于图谱的解析。 用MS-MS找出母离子和子离子,或用
Mini-β小型质谱
清谱科技液质联用仪, Mini β小型质谱分析系统体现原位电离与小型质谱仪的完美结合,集样品制备、扫描分析、数据处理和结果报告等功能于一体,高度自动化与智能化,快速完成样品分析并极大简化操作流程。复杂样品,简单分析,快速报告;无需专业培训及特殊技术操作。
质谱解析(一)
质谱图的组成 质谱图由横坐标、纵坐标和棒线组成。 横坐标标明离子质荷比(m/z)的数值, 纵坐标标明各峰的相对强度, 质谱术语 基峰(Base peak) 质谱图中离子
质谱基线高
背景过高考虑是不是离子源脏了,要清洗离子源。柱子也用高有机相冲洗一下,另外1%的乙酸有点高,一般0.1%就够了。
质谱解析(七)
烃类化合物 1. 烷烃 直链烷烃 (1)显示弱的分子离子峰。 (2)由一系列峰簇组成,峰簇之间差14个单位。(29、43、57、71、85、99…) (3)各峰簇的顶端形成一平滑曲线,最高点在C3或C4。 (4)比M+.峰质量数低的下一个
质谱解析(四)
实例一 化合物A的质谱数据及图如下,推导其分子式。 解:图中高质荷比区m/z73,74 m/z73为M+.,与相邻强度较大的碎片离子58之间(15)为合理丢失峰(.CH3),可认为m/z73为化合物A的分子离子
质谱解析(三)
分子离子峰的识别 A.在质谱图中,分子离子峰应该是最高质荷比的离子峰(同位素离子及准分子离子峰除外)。 B.分子离子峰是奇电子离子峰。 C.分子离子能合理地丢失碎片(自由基或中性分子),与其相邻的质荷比较小的碎片离子关系合理。 D.氮律:当化合物不含氮或
质谱当前趋势
Technology Networks编辑Jack Rudd就最近布鲁克质谱的发展情况采访了布鲁克·道尔顿执行副总裁Rohan Thakur 质谱技术一直以惊人的速度迅猛发展着,包括速度和分辨率。新的工具和软件也推动其在潜在应用领域的增长。这些因素促进了质谱在药物开发、蛋白质组学、药物、食品安
质谱解析小结
实例一 请写出下列化合物质谱中基峰离子的形成过程。 1,4-二氧环己烷 基峰离子m/z 28 可能的形成过程为: 2-巯基丙酸甲酯
质谱解析(五)
裂解方式 简单开裂 重排开裂 简单开裂 从化学键断裂的方式可分为均裂、异裂和半异裂(σ键先被电离, 然后断裂)。 简单开裂可分为以下主要三种 (1)α-裂解由
质谱维护经验
做样前-检查氮气,流动相,质谱仪的真空度,毛细管温度…1) 最好不用直接进样(容易污染离子源)。2) 做联用时最好分流(a可以使用常规柱,b缩短分析时间,c 延长质量分析器寿命)。3) 最好使用在线切换阀,降前每个样品的前后1-2分钟的流动相切入废液(避免样品中的盐进入质谱,做Sequence时可以
质谱检测原理
质谱法的原理如下:待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质
质谱解析程序
解析未知样的质谱图,大致按以下程序进行。(一)解析分子离子区(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。(2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。(3) 分析同位素峰簇的
飞行质谱技术
飞行质谱的全称是表面增强激光解吸电离飞行时间质谱技术(SELDI-TOF或SELDI)。质谱技术-飞行质谱是由2002年诺贝尔化学奖得主田中(Tanaka)发明,赛弗吉(Ciphergen)系统生物公司制造的特殊芯片,诞生伊始便引起学术界的重视,成为最引人注目的亮点。 工作原理 早期的飞行质谱为基
质谱是什么
质谱是通过将样品分离成带电离子后再进入质谱仪,通过对质谱图的解析,分析样品的组成、结构和特性的一种分析技术。1、质谱基本原理:质谱仪的基本原理是将样品中的分子离子化并进行分离。在气相中,样品分子会被电离成相应的带电离子,然后通过电场和/或磁场进行分离,使得不同质量的带电离子到达探测器的时间不同。这些
质谱联用技术
质谱仪是一种很好的定性鉴定用仪器,对混合物的分析无能为力。色谱仪是一种很好的分离用仪器,但定性能力很差,二者结合起来,则能发挥各自专长,使分离和鉴定同时进行。因此,早在20世纪60年代就开始了气相色谱-质谱联用技术的研究,并出现了早期的气相色谱-质谱联用仪。在70年代末,这种联用仪器已经达到很高的水
色谱质谱联用
(1)气相色谱-质谱联用在色谱联用仪中,气相色谱-质谱(GC-MS)联用仪是开发最早的色谱联用仪器。由于从气相色谱柱分离后的样品呈气态,流动相也是气体,与质谱的进样要求相匹配,最容易将这两种仪器联用。因此最早实现商品化的色谱联用仪器就是气相色谱-质谱联用仪。现在小型台式GC-MS已成为很多实验室的常
质谱干扰来源
质谱干扰1)多原子离子干扰多原子离子干扰是最常见的质谱干扰类型。这些离子,顾名思义是由两个或更多的原子结合而成的短寿命的复合离子,其干扰来源为:等离子体/雾化所使用的气体、溶剂/样品的基体组分、样品中其他元素离子或者是来自周围环境氧气/氮气。例如:氩气等离子体中,氩气离子及氩气离子与其他离子形成的复