青蒿素的生物合成方法

青蒿素存在于中草药青蒿的花叶中,茎中不含有,是一种含量非常低的萜类化合物,生物合成途径非常复杂。现已知可通过三种方式进行青蒿素的生物合成,一是通过对控制青蒿素合成的关键酶进行调控,添加生物合成的前体来增加青蒿素的含量;二是激活关键酶控制的基因,大幅度增加青蒿素的含量;三是利用基因工程手段改变关键基因,以增强它们所控制酶的作用效率。生物合成过程中,青蒿素的含量受光照、外源激素、芽分化等生理生态因子的影响很大,温度对于生物合成也有极大影响,通过试验研究发现,青蒿幼苗在40℃条件下,处理36h后,青蒿素的质量分数提高到最大为68%。除青蒿之外,其它植物也可以合成青蒿素,2011年研究人员从烟草中合成青蒿素。此方法与传统化学方法相比,所用的化学试剂大大减少,有利于环境的保护,且该生物合成方法的受体为烟草,在中国较为广泛,因此原料来源较为丰富,但不足的是用烟草合成青蒿素过程中的某些反应基质并不清楚,还有待开发,但该合成方法仍有较好的工业应......阅读全文

青蒿素的生物合成方法

青蒿素存在于中草药青蒿的花叶中,茎中不含有,是一种含量非常低的萜类化合物,生物合成途径非常复杂。现已知可通过三种方式进行青蒿素的生物合成,一是通过对控制青蒿素合成的关键酶进行调控,添加生物合成的前体来增加青蒿素的含量;二是激活关键酶控制的基因,大幅度增加青蒿素的含量;三是利用基因工程手段改变关键基因

关于青蒿素的生物合成的介绍

  青蒿素存在于中草药青蒿的花叶中,茎中不含有,是一种含量非常低的萜类化合物,生物合成途径非常复杂。  现已知可通过三种方式进行青蒿素的生物合成,一是通过对控制青蒿素合成的关键酶进行调控,添加生物合成的前体来增加青蒿素的含量;二是激活关键酶控制的基因,大幅度增加青蒿素的含量;三是利用基因工程手段改变

青蒿素的化学合成方法

以 R -(+)- 香茅醛为原料合成青蒿素过程  1983年,化学家HofheinzW等通过化学研究发现了青蒿素的化学合成方法,以(-)-2-异薄勒醇为原料,利用光氧化反应引进氧基得到中间体,再经过环合反应合成了最终产物。合成倍半萜内酯,主要有两个限速步骤:倍半萜母核的折叠和环化;含过氧桥的倍半萜内

青蒿素实现常规化学方法高效合成

  记者从上海交通大学今天在沪举行的新闻发布会上获悉,该校教授张万斌领衔的科研团队历时7年,终于研发出一种常规的化学合成方法,首次实现了抗疟药物青蒿素的高效人工合成,使青蒿素有望实现大规模工业化生产。   疟疾一直以来是一种全球性疾病,每当即将暴发大规模疟疾时,人们就会想到使用青蒿素药物对其进行控

Nature:合成生物学里程碑-大规模量产半合成青蒿素

非洲肯尼亚的种植青蒿的人员正在清理田地。  在获得一项突破性研究发现的12年之后,来自加州大学伯克利分校(UC Berkeley)化学工程学系的Jay Keasling看到他的梦想成为了现实。  在4月11日,赛诺菲(Sanofi)将基于Keasling研究发现,启动大规模地生产一种半合成青蒿素(a

倍半萜的生物合成方法

在生物体内,萜类化合物是由乙酰辅酶A转化而来的。首先乙酰辅酶A和二氧化碳结合转化为丙二酰辅酶A,后者再和一分子的乙酰辅酶A形成乙酰乙酰辅酶A,这个中间体再和一分子乙酰辅酶A进行羟醛缩合反应,就得到一个六碳中间体,然后还原水解,产生萜的生物合成前体,3-甲基-3,5-二羟基戊酸。经过腺苷三磷酸(ATP

微生物所等解析出青蒿素类过氧桥键的生物合成机制

  自然界中含有过氧桥键的化合物具有多种生物活性,包括抗感染、抗肿瘤、以及抗心律失常,其中最具代表性的青蒿素(artemisinin)已经作为抗疟疾药物应用于临床近40年。我国学者屠呦呦近日也因青蒿素研究工作共同获得2015年诺贝尔生理学或医学奖。美国加州大学伯克利分校教授Jay Keas

首次阐明了茉莉酸信号在青蒿素生物合成中的调控作用

   疟疾是由蚊虫叮咬所引起的全球范围内的传染性疾病。据WHO的最新统计,2016年有2.16亿人感染疟疾,死亡人数高达44.5万人。青蒿素及其衍生物是世界卫生组织 (WHO) 推荐的基于青蒿联合治疗 (ACT) 疟疾的最主要成分。我国学者屠呦呦教授因在青蒿中发现了青蒿素而荣获2015年的诺贝尔生理

青蒿素的化学合成的相关介绍

  1983年,化学家HofheinzW等通过化学研究发现了青蒿素的化学合成方法,以(-)-2-异薄勒醇为原料,利用光氧化反应引进氧基得到中间体,再经过环合反应合成了最终产物。合成倍半萜内酯,主要有两个限速步骤:倍半萜母核的折叠和环化;含过氧桥的倍半萜内酯的形成程。  1986年,中国科学家周维善以

生物方法合成甘氨酸

20世纪80年代后期,日本三菱公司把过筛选的好氧土壤杆菌属、短杆菌属、棒状杆菌属等微生物菌属加入到含有碳源、氮源及无机营养液的介质中进行培植,然后将该类菌种在25~45℃,pH在4~9的情况下,使乙醇胺转化为甘氨酸,用浓缩中和离子交换处理得到甘氨酸。

卵裂的生物合成方法介绍

卵裂期分裂球虽然不生长,但有些物质仍在进行合成。蛋白质的合成始终在进行。组蛋白是细胞核的组成成份,海胆胚胎在卵裂中期细胞核中有50%的蛋白质是新合成的。卵裂机制涉及的主要物质──微丝,是由肌动蛋白组成,这种蛋白质也是在此时期合成的。此外尚有卵裂期中主要的酶,如核苷酸还原酶,DNA多聚酶,也是新合成的

香兰素的生物合成方法介绍

香兰素的生物合成方法主要有微生物发酵、酶工程、细胞工程等。但是综合考虑技术可行性、经济性、安全性等因素,微生物发酵法被认为是目前最实际的天然香兰素制取方法。许多细菌和真菌都可用来生产香兰素,这些微生物以阿魏酸、丁子香酚、异丁子香酚、香草醇等化合物为前体,发酵获得香兰素。

​莽草酸的生物合成方法

糖酵解产生的磷酸烯醇式丙酮酸(PEP)和戊糖磷酸途径产生的D-赤藓糖-4-磷酸作用形成中间产物3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸,进一步环化成重要中间产物莽草酸。莽草酸再与PEP作用,形成3-烯醇丙酮酸莽草酸-5-磷酸,脱去Pi,形成分支酸。分支酸是莽草酸途径的重要枢纽物质,它以后的去向分为两个

青蒿素的药理作用及萃取合成工艺

青蒿素,是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物,是一种重要的抗疟疾药。化学结构青蒿素分子式为C15H22O5,分子量282.33,组分含量:C 63.81%,H 7.85%,O 28.33%。物理化性质青蒿素为无色针状晶体,味苦。在在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇

青蒿素检测方法

青蒿素是从中药黄花蒿中分离的具有抗恶性疟疾激励的一种化合物,呈无色针状结晶。黄花蒿(Artemisia annua Linn)为中国传统中草药。其有效成分—青蒿素具有良好的抗疟效果。目前青蒿素用于疟疾防治的价值已被人类认识和接受,世界卫生组织已把青蒿素的复方制剂列为国际上防治疟疾的首选药物。

氨基酸的生物合成方法

在20种基本氨基酸中,人类可以合成其中的11种。另外9种氨基酸必需从食物中摄取,所以称为必需氨基酸,即苯丙氨酸、甲硫氨酸、苏氨酸、色氨酸、赖氨酸、组氨酸、缬氨酸、亮氨酸和异亮氨酸 。生化中根据氨基酸的合成途径将其分为5类:谷氨酸类型、天冬氨酸类型、丙酮酸衍生物类型、丝氨酸类型和芳香族氨基酸类型。组成

概述青蒿素的检测方法

  化学分析法中的碘量法是利用氧化还原性质对青蒿素进行定量分析的经典方法。而改进的桥式有机过氧物碘量法以2.5mol·L-1硫酸-无水乙醇为酸性介质,减少碘的自身氧化,提高了此法的准确性。但该法操作相对繁杂,目前已少用。生物化学法以其专一性强、灵敏度高的优点受到关注,而使用特异性强的酶联免疫法(EL

青蒿素的制备方法介绍

化学合成以 R -(+)- 香茅醛为原料合成青蒿素过程 1983年,化学家HofheinzW等通过化学研究发现了青蒿素的化学合成方法,以(-)-2-异薄勒醇为原料,利用光氧化反应引进氧基得到中间体,再经过环合反应合成了最终产物。合成倍半萜内酯,主要有两个限速步骤:倍半萜母核的折叠和环化;含过氧桥的倍

青蒿素的提取纯化方法

分离纯化工艺主要有溶剂外加能量协助提取法、提取重结晶法、超临界CO2萃取法和溶剂提取层析法。溶剂提取重结晶法一般采用的溶剂汽油法,乙醇法和碱水提取酸沉淀法进行生产,此类方法明显增加了青蒿素植物的有效利用率。碱水提取酸沉淀法:取一定量的青蒿枝叶干粉加入乙醇搅拌浸提,得到乙醇提取液,减压干燥,将其溶于乙

关于青蒿素的衍生物的介绍

  青蒿素及其衍生物都是一种含过氧化基团的倍半萜内酯化合物。 [22] 将青蒿素结构中的C-10位羧基还原成羟基可以得到双氢青蒿素,而进一步烷氧基化就得到蒿甲醚,而进行酯化就可得到青蒿琥酯。 [23]  青蒿琥酯对白血病、大肠癌、黑色素瘤、乳腺癌、卵巢癌、前列腺癌和肾癌细胞均有抑制作用。  双氢青蒿

皮质类固醇的生物合成方法介绍

皮质类固醇是由肾上腺皮质内的胆固醇合成的。大多数类固醇合成反应由催化的酶的的细胞色素P450家族。它们位于线粒体内,需要肾上腺素氧还蛋白作为辅助因子(21-羟化酶和17α-羟化酶除外)。醛固酮和皮质酮共享其生物合成途径的xxx部分。最后一部分由醛固酮合酶(对于醛固酮)或11β-羟化酶(对于皮质酮)介

简述麦角固醇的生物合成方法

  麦角甾醇的合成途径主要分为4个关键步骤,首先是甲羟戊酸的生物合成。甲羟戊酸是胆甾醇、萜烯(terpene)类等类戊二烯生物合成的重要中间体,由乙酰辅酶A缩合成3-羟基-3-甲基戊二酰辅酶A(3-hydroxy-3-methylglutarylcoenzyme A,HMGCoA)后,经还原并脱去辅

叶绿素的生物合成

  叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入Mg 离子,形成Mg-原卟啉,之后形成原叶绿素酯,再还原生成叶绿素酯。[1][2]  叶绿素

多肽的生物合成

同时,游离在细胞质中的转运RNA(tRNA)把它携带的特定氨基酸放在核糖体的mRNA的相应位置上,然后tRNA离开核糖体,再去搬运相应的氨基酸(amino acid),这样,在合成开始时,总是携带甲硫氨酸的tRNA先进入核糖体,接着带有第二个氨基酸的tRNA才进入,此时带甲硫氨酸的tRNA把甲硫氨酸

脂肪的生物合成

脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合

叶绿素的生物合成

  通过同位素标记实验、酶学研究和突变体分析,目前已经对叶绿素生物合成的途径有了详细的了解。  叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入

青蒿素检测的方法有哪些?

青蒿素检测的方法包括化学分析法、光谱分析法、色谱分析法、生物学方法等。

青蒿素检测的方法有哪些?

青蒿素检测的方法包括化学分析法、光谱分析法、色谱分析法、生物学方法等。化学分析法中的碘量法是利用氧化还原性质对青蒿素进行定量分析的经典方法。而改进的桥式有机过氧物碘量法以2.5mol·L-1硫酸-无水乙醇为酸性介质,减少碘的自身氧化,提高了此法的准确性。但该法操作相对繁杂,目前已少用。生物化学法以其

双氢青蒿素的检查方法

有关物质照高效液相色谱法(通则0512)测定。临用新制供试品溶液取本品0.25g,置25ml量瓶中,加甲醇适量,超声使双氢青蒿素溶解,用甲醇稀释至刻度,摇匀。对照溶液精密量取供试品溶液1ml,置200ml量瓶中,用甲醇稀释至刻度,摇匀。系统适用性溶液取双氢青蒿素(出现两个色谱峰)对照品与青蒿素对照品

德科学家开发出快速合成青蒿素新法

  德国马克斯·普朗克协会(简称马普协会)研究人员近日宣布,他们开发出一种快速合成青蒿素的新法,能够更廉价、更高效、更环保地制备这种抗疟疾药物。  青蒿素是一种抗疟良药,但直接从植物中提取成本较高,且产量有限。于是,研究人员考虑利用提取青蒿素后剩余的植物“废料”化学合成青蒿素。  早在2012年,马