物理气相沉积的详述

(一)真空蒸镀原理(1) 真空蒸镀是在真空条件下,将镀料加热并蒸发,使大量的原子、分子气化并离开液体镀料或离开固体镀料表面(升华)。(2)气态的原子、分子在真空中经过很少的碰撞迁移到基体。(3)镀料原子、分子沉积在基体表面形成薄膜。(二)蒸发源将镀料加热到蒸发温度并使之气化,这种加热装置称为蒸发源。最常用的蒸发源是电阻蒸发源和电子束蒸发源,特殊用途的蒸发源有高频感应加热、电弧加热、辐射加热、激光加热蒸发源等。(三)真空蒸镀工艺实例 以塑料金属化为例,真空蒸镀工艺包括:镀前处理、镀膜及后处理。真空蒸镀的基本工艺过程如下:(1)镀前处理,包括清洗镀件和预处理。具体清洗方法有清洗剂清洗、化学溶剂清洗、超声波清洗和离子轰击清洗等。具体预处理有除静电,涂底漆等。(2)装炉,包括真空室清理及镀件挂具的清洗,蒸发源安装、调试、镀件褂卡。(3)抽真空,一般先粗抽至6.6Pa以上,更早打开扩散泵的前级维持真空泵,加热扩散泵,待预热足够后,打开高阀......阅读全文

物理气相沉积的详述

(一)真空蒸镀原理(1) 真空蒸镀是在真空条件下,将镀料加热并蒸发,使大量的原子、分子气化并离开液体镀料或离开固体镀料表面(升华)。(2)气态的原子、分子在真空中经过很少的碰撞迁移到基体。(3)镀料原子、分子沉积在基体表面形成薄膜。(二)蒸发源将镀料加热到蒸发温度并使之气化,这种加热装置称为蒸发源。

物理气相沉积和化学气相沉积的对比

  化学气相沉积过程中有化学反应,多种材料相互反应,生成新的的材料。  物理气相沉积中没有化学反应,材料只是形态有改变。  物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。缺点膜一基结合力弱,镀膜不耐磨, 并有方 向性  化学杂质难以去除。优点可造金属膜、非

物理气相沉积(PVD)技术简介

  物理气相沉积(Physical Vapour Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 物理气相沉积的主要方法有,真空蒸镀、溅射

物理气相沉积(PVD)的基本过程

  物理气相沉积的基本过程  (1)气相物质的产生  一类方法是使镀料加热蒸发,称为蒸发镀膜;另一类是用具有一定能量的离子轰击靶材(镀料),从靶材上击出镀料原子,称为溅射镀膜。  (2)气相物质的输送  气相物质的输送要求在真空中进行,这主要是为了避免气体碰撞妨碍气相镀料到达基片。   (3)气相物

物理气相沉积和化学气相沉积的区别及优缺点

化学气相沉积过程中有化学反应,多种材料相互反应,生成新的的材料。物理气相沉积中没有化学反应,材料只是形态有改变。物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。缺点膜一基结合力弱,镀膜不耐磨, 并有方 向性化学杂质难以去除。优点可造金属膜、非金属膜,又可按要

物理气相沉积法与化学气相沉积法有何区别

物理气相沉积法与化学气相沉积法有3点不同,相关介绍具体如下:一、两者的特点不同:1、物理气相沉积法的特点:物理气相沉积法的沉积粒子能量可调节,反应活性高。通过等离子体或离子束介人,可以获得所需的沉积粒子能量进行镀膜,提高膜层质量。通过等离子体的非平衡过程提高反应活性。2、化学气相沉积法的特点:能得到

物理气相沉积法与化学气相沉积法有何区别

物理气相沉积法可以看作是物理过程,实现物质的转移,最终沉积到靶材上面。化学气相沉积法是在一定条件下通过化学反应,形成所需物质沉积在靶材或者基材表面。

物理气相沉积法与化学气相沉积法有何区别

物理气相沉积法与化学气相沉积法有3点不同,相关介绍具体如下:一、两者的特点不同:1、物理气相沉积法的特点:物理气相沉积法的沉积粒子能量可调节,反应活性高。通过等离子体或离子束介人,可以获得所需的沉积粒子能量进行镀膜,提高膜层质量。通过等离子体的非平衡过程提高反应活性。2、化学气相沉积法的特点:能得到

物理气相沉积法和化学气相沉积法的优劣势有哪些

化学气相沉积过程中有化学反应,多种材料相互反应,生成新的的材料。物理气相沉积中没有化学反应,材料只是形态有改变。物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。缺点膜一基结合力弱,镀膜不耐磨, 并有方 向性化学杂质难以去除。优点可造金属膜、非金属膜,又可按要

物理气相沉积法和化学气相沉积法的优劣势有哪些

化学气相沉积过程中有化学反应,多种材料相互反应,生成新的的材料。物理气相沉积中没有化学反应,材料只是形态有改变。物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。缺点膜一基结合力弱,镀膜不耐磨, 并有方 向性化学杂质难以去除。优点可造金属膜、非金属膜,又可按要

物理气相沉积-(PVD)技术,他的优缺点是什么

电子束蒸发是一种物理气相沉积 (PVD)技术,它在真空下利用电子束直接加热蒸发材料(通常是颗粒),并将蒸发的材料输送到基板上形成一个薄膜.电子束蒸镀可以镀出高纯度、高精度的薄膜.电子束蒸发应用电子束蒸发因其高沉积速率和高材料利用效率而被广泛应用于各种应用中.例如,高性能航空航天和汽车行业,对材料的耐

物理气相沉积三个基本要素是什么

1、镀料的气化。即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。2、镀料原子、分子或离子的迁移。由气化源供出原子、分子或离子经过碰撞后,产生多种反应。3、镀料原子、分子或离子在基体上沉积。物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航

电子束蒸发是一种物理气相沉积的优缺点是什么

电子束蒸发是一种物理气相沉积 (PVD)技术,它在真空下利用电子束直接加热蒸发材料(通常是颗粒),并将蒸发的材料输送到基板上形成一个薄膜.电子束蒸镀可以镀出高纯度、高精度的薄膜.电子束蒸发应用电子束蒸发因其高沉积速率和高材料利用效率而被广泛应用于各种应用中.例如,高性能航空航天和汽车行业,对材料的耐

电子束蒸镀是物理气相沉积的一种,其蒸镀原理和作用

电子束蒸镀(Electron Beam Evaporation)是物理气相沉积的一种.与传统蒸镀方式不同,电子束蒸镀利用电磁场的配合可以精准地实现利用高能电子轰击坩埚内靶材,使之融化进而沉积在基片上.电子束蒸镀可以镀出高纯度高精度的薄膜.蒸镀原理电子束蒸镀是利用加速电子轰击镀膜材料,电子的动能转换成

沉积物的形成

1. 沉积物的来源构成沉积岩的物质从成因上大致可分为两类。1) 他生 (allogenic) 物质: 一是存在于暴露在地表的既存岩石 (岩浆岩、变质岩、古老的沉积岩) 中的矿物,或矿物集合体 (即岩屑) ,脱离母岩 (provenance) 后作为固体颗粒被流动介质 (如水、空气、冰川等) 搬运到沉

沉积物污染的定义

中文名称沉积物污染英文名称sediment pollution定  义污染物及其转化降解产物在水底沉积物中的积累,并直接或间接对生态系统产生不良影响的现象。应用学科生态学(一级学科),污染生态学(二级学科)

致密物沉积病的病因

  病因不明。50%的患者有上呼吸道感染的前驱症状,其中21%~45%的患者ASO滴度升高,因此,推测DDD可能与A组链球菌感染有关,但有争议。

化学气相沉积的概述

  化学气相沉积是一种化工技术,该技术主要是利用含有薄膜元素的一种或几种气相化合物或单质、在衬底表面上进行化学反应生成薄膜的方法。化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物

化学气相沉积的特点

  1)在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。  2)可以在常压或者真空条件下(负压“进行沉积、通常真空沉积膜层质量较好)。  3)采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行。  4)涂层的化学成分可以随气相组成的改变而变化

关于致密物沉积病的简介

  致密物沉积病(dense deposit disease,DDD)是依据电镜下超微结构病理改变特征命名的,是一组以肾小球基膜内出现均匀一致、强嗜锇性电子致密物为主要特征的肾小球肾炎。临床主要表现持续低补体C3血症、蛋白尿和血尿,病理生理基础为补体旁路途径异常活化。由于其光镜病理特征与MPGN相似

致密物沉积病的发病机制

  尽管DDD形态学上与MPGN有相似之处,但在发病机制上却有着本质的差异。Ⅰ型和Ⅲ型MPGN主要为免疫复合物介导的疾病,与之相反,DDD多与免疫复合物无关,而是由于体内存在补体活化调节异常,触发补体系统功能紊乱的因素包括C3肾炎因子,H因子等。  1. C3肾炎因子(C3NeF) 正常时,体内补体

沉积物样品的采集方法

水中沉积物采集的办法主要有两种:一种是直接挖掘的办法,这种方法适用于大量样品的采集,但是采集的样品极易相互混淆,当挖掘机打开时,一些不黏的泥土组分容易流走;另一种是用一种类似于岩心提取器一样的采集装置。采样量较大而样品不相互混淆,这种装置采集的样品,同时也可以反映沉积物不同深度层面的情况。使用金属装

沉积物样品的采集方法

1.沉积物岩石性质沉积物岩石性质的研究包括粒度组成、矿物成分、黏土矿物、结构、颗粒表面形态、化学成分、颜色等。沉积物结构样品一般需要保持原状,有时还需要定向。在剖面上把要采集的部分切成方块,画好方向;取下样品50~100g用纸包装,标好方向,放入专门的铁盒或铝盒中。空隙处用软纸等物塞紧,以免运输时破

简述化学气相沉积的应用

  现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺入某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。

化学气相沉积的原理简介

  化学气相沉积技术是应用气态物质在固体上产生化学反应和传输反应等并产生固态沉积物的一种工艺,它大致包含三步:  (1)形成挥发性物质 ;  (2)把上述物质转移至沉积区域 ;  (3)在固体上产生化学反应并产生固态物质 。  最基本的化学气相沉积反应包括热分解反应、化学合成反应以及化学传输反应等几

什么叫沉积物波

在许多现代浊流体系中已经观察到细粒沉积物波,通常限于漫滩沉积要素。使用高分辨率地震反射剖面、沉积物岩心样品(包括海洋钻井平台钻井)、多波束海洋测深、3D地震反射成像(包括埋藏特征)和对溢出河道的浊流的直接测量,对比了6个海底扇体系上发育的沉积物波。这些海底扇实例扩展超过了实际比例的3个级别。沉积物波

什么是气相沉积法

化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。 化学气相沉积主要是以末种化合物,为反应气体,在一定的保护气氛下反应生成单质原子并沉积在加热的衬底上,衬底材料一般选用次单质或其稳定化合物等。

真空镀膜的技术分类

真空镀膜技术一般分为两大类,即物理气相沉积(PVD)技术和化学气相沉积(CVD)技术。物理气相沉积技术是指在真空条件下,利用各种物理方法,将镀料气化成原子、分子或使其离化为离子,直接沉积到基体表面上的方法。制备硬质反应膜大多以物理气相沉积方法制得,它利用某种物理过程,如物质的热蒸发,或受到离子轰击时

真空镀膜技术分类

真空镀膜技术一般分为两大类,即物理气相沉积(PVD)技术和化学气相沉积(CVD)技术。物理气相沉积技术是指在真空条件下,利用各种物理方法,将镀料气化成原子、分子或使其离化为离子,直接沉积到基体表面上的方法。制备硬质反应膜大多以物理气相沉积方法制得,它利用某种物理过程,如物质的热蒸发,或受到离子轰击时