赤霉素的有关历史
1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多种赤霉素,分别被命名为GA1,GA2等。以后从植物中发现有十多种细胞分裂素,赤霉素广泛存在于菌类、藻类、蕨类、裸子植物及被子植物中。商品生产的赤霉素是GA3、GA4和GA7。GA3又称赤霉酸,是最早分离、鉴定出来的赤霉素,分子式为C19H22O6。即6-呋喃氨基嘌呤。......阅读全文
赤霉素的有关历史
1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多
细胞分裂素的有关历史
这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米
有关高尔基体的历史简介
高尔基体(Golgi apparatus, Golgi bodies)是由许多扁平的囊泡构成的以分泌为主要功能的细胞器。又称高尔基器或高尔基复合体;在高等植物细胞中称分散高尔基体。最早发现于1855年,1898年由意大利神经学家、组织学家卡米洛·高尔基(Camillo Golgi,1844-19
植物激素生长素有关历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长
有关抗生素的使用历史的介绍
1877年,Pasteur和Joubert首先认识到微生物产品有可能成为治疗药物,他们发表了实验观察,即普通的微生物能抑制尿中炭疽杆菌的生长。 1928年,弗莱明爵士发现了能杀死致命的细菌的青霉菌。青霉素治愈了梅毒和淋病,而且在当时没有任何明显的副作用。 1936年,磺胺的临床应用开创了现代
植物激素细胞分裂素的有关历史简介
这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的
赤霉素的存在部位
高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。
赤霉素的存在部位
高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。
赤霉素的研究应用
1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多
赤霉素的主要作用
赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促
赤霉素的作用介绍
赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促
赤霉素的基本结构
赤霉素都含有赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的前体一般认为是贝壳杉烯。赤霉素的基本结构是赤霉素烷,有4个环。在赤霉素烷上,由于双键、羟基数目和位置不同,形成了各种赤霉素 。自由态赤霉素是具19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯,易溶于水。
赤霉素的存在形式
高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。
赤霉素的作用介绍
赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促
赤霉素的主要种类
自由型不以键的形式与其他物质结合,易被有机溶剂提取出来,具有生理活性。结合型和其他物质(如葡萄糖)结合,要通过酸水解或蛋白酶分解才能释放出自由赤霉素,无生理活性。束缚型这是GA的一种储藏形式。种子成熟时,GA转化为束缚型贮存,而在种子萌发时,又转变成游离型而发挥其调节作用。
赤霉素的主要作用
赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促
什么是赤霉素
1926年,日本人黑泽英一从对水稻恶苗病的研究中发现了另外一种植物激素——赤霉素。日本人发现,稻田中总有一些水稻会染上一种疯长病,表现为植株生长异常旺盛,但结实率很低。这样的水稻不但自己生长要消耗大量的肥、水,还影响了周围水稻的采光、通风和吸取营养,因此被称为恶苗,这种会在植物间传染的病就被称为恶苗
什么是赤霉素
GA3是赤霉素的一种,又称“九二O”。赤霉素是1935年日本科学家薮田在研究水稻恶苗病时发现的,它是指具有赤霉烷骨架,并能刺激细胞伸长和分裂的一类化合物的总称。到1998年为止,已发现121种赤霉素,分别称为GA1~GA121。可以说,赤霉素是植物激素中种类最多的一种激素。但是,在生产实践中广泛应用
赤霉素是什么
赤霉素,是广泛存在的一类植物激素。其化学结构属于二萜类酸,由四环骨架衍生而得。可刺激叶和芽的生长。已知的赤霉素类至少有38种。赤霉素应用于农业生产,在某些方面有较好效果。例如提高无籽葡萄产量,打破马铃薯休眠;在酿造啤酒时,用GA3来促进制备麦芽糖用的大麦种子的萌发;当晚稻遇阴雨低温而抽穗迟缓时,用赤
赤霉素是什么
赤霉素,是广泛存在的一类植物激素。其化学结构属于二萜类酸,由四环骨架衍生而得。可刺激叶和芽的生长。已知的赤霉素类至少有38种。赤霉素应用于农业生产,在某些方面有较好效果。例如提高无籽葡萄产量,打破马铃薯休眠;在酿造啤酒时,用GA3来促进制备麦芽糖用的大麦种子的萌发;当晚稻遇阴雨低温而抽穗迟缓时,用赤
赤霉素对α实验
一、原理 淀粉性种子在萌动过程中,胚释放出来的赤霉素能诱导糊粉层细胞中α-淀粉酶基因的表达,引起α-淀粉酶生物合成,并分泌到胚乳中催化淀粉水解为糖。通过碘试法比色测定淀粉在酶催化反应过程中的消耗量,可以定量分析α-淀粉酶的活力。 二、材料、仪器设备 及试剂 (一)材料:大麦、小麦
赤霉素的分布特点
广泛分布于被子、裸子、蕨类植物、褐藻、绿藻、真菌和细菌中,多存在于生长旺盛部分,如茎端、嫩叶、根尖和果实种子。含量:1~1000ng鲜重,果实和种子(尤其是未成熟种子) 的赤霉素含量比营养器官的多两个数量级。每个器官或组织都含有两种以上的赤霉素,而且赤霉素的种类、数量和状态 (自由态或结合态)都因植
关于赤霉素的用途介绍
赤霉素适合以下作物:棉花、番茄、马铃薯、果树、稻、麦、大豆、烟草等,促进其生长、发芽、开花结果;能刺激果实生长,提高结实率,对棉花、蔬菜、瓜果、水稻、绿肥等有显著的增产效果。 赤霉素最突出的生理效应是促进茎的伸长和诱导长日植物在短日条件下抽薹开花。各种植物对赤霉素的敏感程度不同。遗传上矮生的植
关于赤霉素的分类介绍
1、自由型 不以键的形式与其他物质结合,易被有机溶剂提取出来,具有生理活性。 2、结合型 和其他物质(如葡萄糖)结合,要通过酸水解或蛋白酶分解才能释放出自由赤霉素,无生理活性。 3、束缚型 这是GA的一种储藏形式。种子成熟时,GA转化为束缚型贮存,而在种子萌发时,又转变成游离型而发挥其
简述赤霉素的基本结构
赤霉素都含有赤霉素烷骨架,它的化学结构比较复杂,是双萜化合物。在高等植物中赤霉素的前体一般认为是贝壳杉烯。赤霉素的基本结构是赤霉素烷,有4个环。在赤霉素烷上,由于双键、羟基数目和位置不同,形成了各种赤霉素 [1] 。自由态赤霉素是具19C或20C的一、二或三羧酸。结合态赤霉素多为萄糖苷或葡糖基酯
赤霉素的存在部位介绍
高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位。由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。
赤霉素的发现与研究
1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多
关于赤霉素的分布介绍
广泛分布于被子、裸子、蕨类植物、褐藻、绿藻、真菌和细菌中,多存在于生长旺盛部分,如茎端、嫩叶、根尖和果实种子。含量:1~1000ng鲜重,果实和种子(尤其是未成熟种子) 的赤霉素含量比营养器官的多两个数量级。每个器官或组织都含有两种以上的赤霉素,而且赤霉素的种类、数量和状态 (自由态或结合态)都
赤霉素的用途和作用机制
赤霉素适合以下作物:棉花、番茄、马铃薯、果树、稻、麦、大豆、烟草等,促进其生长、发芽、开花结果;能刺激果实生长,提高结实率,对棉花、蔬菜、瓜果、水稻、绿肥等有显著的增产效果。赤霉素最突出的生理效应是促进茎的伸长和诱导长日植物在短日条件下抽薹开花。各种植物对赤霉素的敏感程度不同。遗传上矮生的植物如矮生
赤霉素的结构和功能特点
赤霉素(gibberellins,GAs)是一类非常重要的植物激素,参与许多植物生长发育等多个生物学过程。赤霉素用A1(GA1)到A126(GA126)的方式命名,数字依照发现的先后顺序。