递质门控离子通道的结构功能

中文名称递质门控离子通道英文名称transmitter-gated ion channel定 义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科),细胞生理(二级学科)......阅读全文

递质门控离子通道的结构功能

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

递质门控离子通道的定义

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

递质门控离子通道的定义

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

递质门控离子通道的基本概念

中文名称递质门控离子通道英文名称transmitter-gated ion channel定  义神经和肌细胞突触后膜结合上专一性的细胞外神经递质才开放的离子通道。具有将化学信号转变为电信号的功能。能使突触后质膜的通透性发生改变,从而引起膜电位改变,促使神经冲动传递下去。应用学科细胞生物学(一级学科

电压门控离子通道的结构组成

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

电压门控离子通道介绍

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

电压门控离子通道的定义

电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。

电压门控离子通道的定义

当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。

电压门控离子通道的原理

当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。

电压门控离子通道的定义

当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。

几种不同的门控离子通道

配体门通道(ligand gated channel)、电位门通道(voltage gated channel)、环核苷酸门通道(Cyclic Nucleotide-Gated Ion Channels)和机械门通道(mechanosensitive channel)。不同通道对不同离子的通透性不同

骨质发育相关的新型阳离子通道结构与门控机制获进展

  10月3日,《自然》(NATURE)期刊在线发表了中国科学院生物物理研究所柳振峰课题组关于三聚态胞内阳离子通道(TRimeric Intracellular Cation channel, TRIC channel)的结构与门控机制研究成果。  钙离子在生物体和细胞的生理活动过程中发挥重要的作用

电压门控离子通道研究取得重要进展

  电压门控钠离子通道简称“钠通道”位于细胞膜上,能够引发和传导动作电位,参与神经信号传递、肌肉收缩等重要生理过程。 钠通道的异常会导致诸如痛觉失常、癫痫、心率失常等一系列神经和心血管疾病。另一方面,很多已知的生物毒素以及临床上广泛应用的麻醉剂等小分子均通过直接作用于钠通道发挥作用。因此,钠通道是诸

骨质发育相关新型阳离子通道结构与门控机制研究获进展

  10月3日,《自然》(NATURE)期刊在线发表了中国科学院生物物理研究所柳振峰课题组关于三聚态胞内阳离子通道(TRimeric Intracellular Cation channel, TRIC channel)的结构与门控机制研究成果。  钙离子在生物体和细胞的生理活动过程中发挥重要的作用

生物膜离子通道的离子通道分类

离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位

离子通道分类

离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位

发现小分子调控人源电压门控钠离子通道的结构学基础

  电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为

我国在离子通道三维结构及精细门控机制方面再获进展

  在国家自然科学基金重点项目(项目编号:31630090)等资助下,清华大学医学院肖百龙课题组和清华大学生科院李雪明课题组开展合作研究,研究成果以“Structure and mechanogating mechanism of the Piezo1 channel”(Piezo1离子通道的结构与

研究发现KIF5B促进电压门控钠离子通道运输及功能

  电压门控钠离子通道是可兴奋细胞产生动作电位的基础,其亚型1.8(Nav1.8)选择性分布于外周神经系统,并对炎性痛和神经病理性痛有重要贡献。之前的研究显示,Nav1.8主要定位于背根神经节(DRG)神经元的细胞质内,外周炎症和神经损伤时聚集到坐骨神经中,但是Nav1.8在神经纤维中发生聚集的分子

龚梁伟《自然》子刊文章神经学重要发现

来自美国康奈尔大学的研究人员通过在微观尺度上分享神经递质如何在细胞间传递,发现之前被认为存在于这个过程中的电流实际上并不存在。这项研究的论文发表在7月22日的《自然·细胞生物学》杂志的网络版上。文章的作者是华裔学者龚梁伟(Liang-Wei Gong)和Manfred Lindau。 康奈尔大学应

《科学》:破解昆虫气味受体离子通道门控机制

6月14日,中国农业科学院深圳农业基因组研究所(简称“基因组所”)、华中农业大学、中国农业科学院植物保护研究所等单位联合在《科学》上在线发表研究论文。蚜虫。中国农科院供图该研究解析了豌豆蚜报警信息素受体ApOR5-Orco异源四聚体的冷冻电镜结构,揭示了气味配体诱导的气味受体离子通道门控机制,从而为

KCND2基因的结构特点及主要作用

电压门控钾(kv)通道从功能和结构上都代表了电压门控离子通道中最复杂的一类。它们的多种功能包括调节神经递质释放、心率、胰岛素分泌、神经元兴奋性、上皮电解质转运、平滑肌收缩和细胞体积。在果蝇中发现了四个与钾通道相关的基因,分别是shaker、shaw、shab和shal,并且每个基因都有人类同源基因该

KCNA4基因的结构特点及主要作用

钾离子通道从功能和结构上都代表了电压门控离子通道中最复杂的一类它们的多种功能包括调节神经递质释放、心率、胰岛素分泌、神经元兴奋性、上皮电解质转运、平滑肌收缩和细胞体积。在果蝇中发现了四个与钾通道相关的基因,分别是shaker、shaw、shab和shal,并且每个基因都有人类同源基因这个基因编码钾通

解析首个环核苷酸门控离子通道的高分辨率三维结构

  1月18日,中国科学院昆明动物研究所离子通道药物研发中心、美国哥伦比亚大学和清华大学开展合作,解析首个环核苷酸门控离子通道的高分辨率三维结构,研究成果以Structure of a eukaryotic cyclic nucleotide-gated channel 为题在线发表在《自然》(Na

哺乳动物电压门控钙离子通道配体调控的分子基础

广泛分布的电压门控Ca2+(Cav)通道参与广泛的生理过程,例如收缩,分泌和细胞死亡。在哺乳动物中,10个Cav通道亚型被分为三个亚家族:Cav1(Cav1.1-Cav1.4),Cav2(Cav2.1-Cav2.3)和Cav3(Cav3.1-Cav3.3)。 Cav1通道,也称为L-型Cav或二氢吡

KCND2基因编码功能及结构描述

电压门控钾(kv)通道从功能和结构上都代表了电压门控离子通道中最复杂的一类。它们的多种功能包括调节神经递质释放、心率、胰岛素分泌、神经元兴奋性、上皮电解质转运、平滑肌收缩和细胞体积。在果蝇中发现了四个与钾通道相关的基因,分别是shaker、shaw、shab和shal,并且每个基因都有人类同源基因该

KCND2基因编码功能及结构描述

电压门控钾(kv)通道从功能和结构上都代表了电压门控离子通道中最复杂的一类。它们的多种功能包括调节神经递质释放、心率、胰岛素分泌、神经元兴奋性、上皮电解质转运、平滑肌收缩和细胞体积。在果蝇中发现了四个与钾通道相关的基因,分别是shaker、shaw、shab和shal,并且每个基因都有人类同源基因该

KCND2基因突变与药物因子介绍

电压门控钾(kv)通道从功能和结构上都代表了电压门控离子通道中最复杂的一类。它们的多种功能包括调节神经递质释放、心率、胰岛素分泌、神经元兴奋性、上皮电解质转运、平滑肌收缩和细胞体积。在果蝇中发现了四个与钾通道相关的基因,分别是shaker、shaw、shab和shal,并且每个基因都有人类同源基因该

关于芋螺毒素的离子通道介绍

  电压门控离子通道超家族是由一大族结构相似的膜结合蛋白组成的,它们受跨膜电压变化的激活。这些蛋白质对单价阳离子具有不同的选择性,按照惯例被分为Ca2+,Na+,和K+通道。这些离子通道的最重要的生理作用是促使细胞电信号的产生、调整和转换。电压门控离子通道的主要孔洞形成α-亚基是由含有4个同源结构域

新视角!物理所揭示电压门控生物离子通道工作机制

  纳米通道中的离子输运特性与机理是研究细胞离子通道、离子整流与纳滤过滤的基础。纳米孔道结构与表面修饰对离子输运调控的研究工作已有诸多报道,但关于电场对于纳米孔道表面与离子输运的影响尚不清楚。  中国科学院近代物理研究所科研人员利用HIRFL高能微束装置的单离子辐照技术和径迹蚀刻法制备的PET单纳米