碱基互补配对的计算规律

根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中......阅读全文

互补碱基的DNA和RNA的主要碱基的差别

胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的。在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,G

互补碱基的基本内容介绍

  互补碱基,碱基间的一一对应的关系叫做碱基互补配对原则就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。  碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同

分子遗传学词汇互补碱基

互补碱基,碱基间的一一对应的关系叫做碱基互补配对原则就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要

分子遗传学词汇碱基配对

中文名称:碱基配对释       义:DNA双螺旋结构和RNA的基础作       用:复制、转录和翻译作用定       义:核酸链间腺嘌呤和尿嘧啶(RNA)或胸腺嘧啶(DNA)以及鸟嘌呤和胞嘧啶的专一氢链结合。分子杂交技术就是根据碱基配对的原理设计的。碱基配对后形成碱基对(basepair,bp

细胞化学词汇胡斯坦碱基配对

中文名称:胡斯坦碱基配对英文名称:Hoogsteen base pairing定  义:一种不同于沃森-克里克配对的碱基配对方式。这种配对中,腺嘌呤的6-NH2和N-7分别与胸腺嘧啶的4-O和H-1形成氢键,鸟嘌呤与胞嘧啶的配对要求胞嘧啶的N-1是质子化的,鸟嘌呤的6-O和N-7分别与胞嘧啶的4-N

沃森克里克碱基配对

中文名称:沃森-克里克碱基配对外文名称:the principle of complementary base pairing本       质:对应关系应用范围:生物学定       义:即碱基互补配对原则(the principle of complementary base pairing)。

沃森克里克碱基配对的定义

即碱基互补配对原则(the principle of complementary base pairing)。在DNA分子结构中,由于碱基间的氢键具有固定数目,且DNA双链间的距离恒定,使得碱基配对必须遵循一定的规律,这就是腺嘌呤(Adenine,A)一定与胸腺嘧啶(Thymine,T)配对,鸟嘌呤

非沃森克里克碱基配对的定义

中文名称非沃森-克里克碱基配对英文名称non-Watson-Crick base-pairing定  义与标准的G与C和A与T(或A与U)不同的碱基配对方式。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

DNA复制的计算规律

DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。一个DNA分子复制n次则形成2n个DNA,但含有最初母链的DNA分子有2个,可形成2Ⅹ2n条脱氧核苷酸链,含有最初脱氧核苷酸链的有2条。子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,形成

沃森克里克碱基配对的定义和原则

即碱基互补配对原则(the principle of complementary base pairing)。在DNA分子结构中,由于碱基间的氢键具有固定数目,且DNA双链间的距离恒定,使得碱基配对必须遵循一定的规律,这就是腺嘌呤(Adenine,A)一定与胸腺嘧啶(Thymine,T)配对,鸟嘌呤

分子遗传学词汇沃森克里克碱基配对

中文名称:沃森-克里克碱基配对外文名称:the principle of complementary base pairing本    质:对应关系应用范围:生物学定义:即碱基互补配对原则(the principle of complementary base pairing)。在DNA分子结构中,

细胞化学词汇非沃森克里克碱基配对

中文名称:非沃森-克里克碱基配对英文名称:non-Watson-Crick base-pairing定  义:与标准的G与C和A与T(或A与U)不同的碱基配对方式。应用学科:生物化学与分子生物学(一级学科),核酸与基因(二级学科) 

DNA母链的复制方式

①时期:有丝分裂间期和减数第一次分裂的间期。②场所:主要在细胞核中。③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA复制都无法进行。④过程:a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的

核糖核酸组成结构

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。 1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少

核糖核酸的组成结构

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少量

核糖核酸的组成结构

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。 1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少

核糖核酸的组成结构

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少量

核糖核酸的组成结构

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。 1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少

细胞化学基础核糖核酸的组成结构

RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA含有少量

简述核糖核酸的组成结构

  RNA和DNA一样,也是由各种核苷酸通过3′,5′-磷酸二酯键连接构成的多核苷酸链,但与DNA有一系列差异。  1.在化学组成方面,RNA含核糖而不含脱氧核糖。含尿嘧啶而不含胸腺密啶。例外的是,每个tRNA分子含有一个胸腺嘧啶,这是在RNA链合成后由尿嘧啶甲基化生的,此外,前面已提到,少数DNA

逆转录PCR各步骤的目的

预变性破坏DNA中可能存在的较难破坏的二级结构。使DNA充分变性,减少DNA复杂结构对扩增的影响,以利于引物更好的和模板结合,特别是对于基因组来源的DNA模板,最好不要吝啬这个步骤。此外,在一些使用热启动Taq酶的反应中,还可激活Taq酶,从而使PCR反应得以顺利进行。三种循环①模板DNA的变性:模

PCR的引物设计注意要点

引物(primers):引物是人工合成的两段寡核苷酸序列,一个引物与感兴趣区域一端的一条DNA模板链互补,另一个引物与感兴趣区域另一端的另一条DNA模板链互补。引物的重要性:在整个PCR体系中, 引物占有十分重要的地位。PCR的特异性要求引物与靶DNA特异结合,不与其他非目的DNA结合,PCR的灵敏

PNAS:赵新生等揭示双链DNA中错配碱基自发翻转的规律

  近日,北京大学生科院生物动态光学成像中心赵新生、高毅勤两个课题组通力合作,近日在《美国科学院院刊》PNAS上发表重要论文,利用新颖的单分子实验手段重新测算了双链DNA错配碱基自发反转的速率,并运用动力学模拟方法对其分子机理进行了深入研究。对于阐明酶对碱基进行修复的分子机理具有重要价值。  如果在

细胞化学词汇DNA错配

DNA错配是指DNA双链核酸分子中存在的非互补性碱基配对的现象,即一条链上的碱基与另一条链上相应的碱基不是互补的。DNA双螺旋结构中碱基之间的配对不是随意的,总是 腺嘌呤(A)与胸腺嘧啶(T)配对,鸟嘌呤(G)与胞嘧啶(C)配对的原则。若出 现了 A与C或G配对,或T与G或C配对,也称为碱基错配。

DNA错配的概念和原则

DNA错配是指DNA双链核酸分子中存在的非互补性碱基配对的现象,即一条链上的碱基与另一条链上相应的碱基不是互补的。DNA双螺旋结构中碱基之间的配对不是随意的,总是 腺嘌呤(A)与胸腺嘧啶(T)配对,鸟嘌呤(G)与胞嘧啶(C)配对的原则。若出 现了 A与C或G配对,或T与G或C配对,也称为碱基错配。

设计引物时需要避免引物之间形成什么而造成引物自连。

设计引物时需要避免引物之间形成_碱基互补配对。而造成引物自连。相同末端或相同黏性末端或相同平末端。末端特指双链DNA分子的端位碱基,是专用名词,不可以用在单链引物上。且引物之间的碱基互补配对不一定是所有碱基都能够互补配对,少量配对也会使两种引物结合在一起,从而不能获得特异性DNA产物。

PCR的引物怎样设计

PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可以在

PCR引物设计原则

  PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。因此,引物的优劣直接关系到PCR的特异性与成功与否。要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可

脱氧核糖核酸的复制方式介绍

  在双螺旋的DNA中,分子链是由互补的核苷酸配对组成的,两条链依靠氢链结合在一起。由于氢链链数的限制,DNA的碱基排列配对方式只能是A对T(由两个氢键相连)或C对G(由三个氢链相连)。因此,一条链的碱基序列就可以决定了另一条的碱基序列,因为每一条链的碱基对和另一条链的碱基对都必须是互补的。在DNA

你们好,Watson和Crick,我们是榫和卯

  凭借着序列互补这一独特的性质,核酸分子在众多生物大分子当中脱颖而出,成为合成生物学中的研究热点之一。以DNA为例,DNA分子中的四种组成A、T、C、G之间有着严格的匹配规则——Watson-Crick碱基互补配对(A与T配对,C与G配对)。这种碱基之间的匹配规则进而造成了碱基序列与碱基序列之间的