增强体的结构功能特点
增强体为复合材料中承受载荷的组分。按几何形状来分,增强体有零维的颗粒状、一维的纤维状、二维的片状和三维的立体结构。按属性来分则有无机增强体和有机增强体,其中有合成的也有天然的。主要的增强体是纤维状的,如无机的玻璃纤维、碳纤维,还有少量碳化硅等陶瓷纤维,有机的则有芳酰胺纤维。......阅读全文
增强体的结构功能特点
增强体为复合材料中承受载荷的组分。按几何形状来分,增强体有零维的颗粒状、一维的纤维状、二维的片状和三维的立体结构。按属性来分则有无机增强体和有机增强体,其中有合成的也有天然的。主要的增强体是纤维状的,如无机的玻璃纤维、碳纤维,还有少量碳化硅等陶瓷纤维,有机的则有芳酰胺纤维。
增强体的结构分类
(1)按几何形状来分增强体有零维的颗粒状、一维的纤维状、二维的片状和三维的立体结构。(2)按属性来分则有无机和有机增强体,其中有合成的也有天然的。主要的增强体是纤维状的,如无机的玻璃纤维、碳纤维,还有少量碳化硅等陶瓷纤维,有机的则有芳酰胺纤维(芳纶)。二维的布和毡也是常用的增强体,其中玻璃、碳以及芳
缓激肽增强肽的功能特点
中文名称缓激肽增强肽英文名称bradykinin potentiating peptide;BPP定 义由蛇毒文库分离到的一种活性寡肽。有两种活性:①加强缓激肽的作用;②抑制血管紧张肽转化酶。这两种相互独立的活性是由于分子的不同构象所致。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级
核糖体RNA的结构和功能特点
核糖体RNA,即rRNA,是细胞内含量最多的一类RNA,也是3类RNA(tRNA,mRNA,rRNA)中相对分子质量最大的一类RNA,它与蛋白质结合而形成核糖体,其功能是在mRNA的指导下将氨基酸合成为肽链(肽链在内质网、高尔基体作用下盘曲折叠加工修饰成蛋白质,原核生物在细胞质内完成)。rRNA占R
核糖体DNA的结构和功能特点
核糖体DNA(Ribosomal DNA,rDNA)是一种DNA序列,该序列用于rRNA编码。核糖体是蛋白质和rRNA分子的组合,翻译mRNA分子以产生蛋白质的组件。真核生物的rDNA包括一个单元段,一个操纵子,以及由NTS、ETS、18S、ITS1、5.8S、ITS2和28S束组成的串联重复序列。
顶体的结构特点
哺乳动物精子的顶体是—个膜性帽状结构,覆盖着精子核的前端。顶体是膜包裹的溶菌体样结构,含有许多水解酶类.如放射冠穿透酶、透明质酸酶、顶体素.蛋白酶、脂解酶、神经酰胺酶和磷酸酶等,其中以放射冠穿透酶.透明质酸酶及顶体素与受精关系最为密切。
顶体的功能特点
顶体(acrosome)是覆盖于精子头部细胞核前方、介于核与质膜间的囊状细胞器,其本质是来源于高尔基体的特化的溶酶体,外包单层膜,呈扁平囊状,内含糖蛋白和多种水解酶,是顶体反应相关酶的储存场所。
包含体的功能特点
包含体是细胞感染病毒后胞浆或核中出现的特殊结构。常用于病毒病的诊断。根据病毒种类,包含体表现大小不一,形态各异,单一或多个,嗜酸或嗜碱。它代表着病毒粒子的合成场所,故又称病毒工厂(virus factory)或病毒原质体(viroplasma)。在包含体内可以发现病毒的核酸和蛋白,也有聚集的病毒粒子
DNA-结构模体的结构和功能
中文名称结构模体英文名称structural motif定 义核酸或蛋白质分子上的亚序列或亚结构。通常具有某种功能。应用学科生物化学与分子生物学(一级学科),总论(二级学科)
移动增强因子的基本功能特点
中文名称移动增强因子英文名称migration enhancement factor;MEF定 义从淋巴细胞中提取得到的增强巨噬细胞向毛细管外迁移的一种因子。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科)
双链体的结构特点
中文名称双链体英文名称duplex定 义双链核酸分子或单链分子中的一个双链区。应用学科遗传学(一级学科),分子遗传学(二级学科)
tRNA前体的结构特点
中文名称tRNA前体英文名称tRNA precursor定 义转移核糖核酸(tRNA)基因转录的初始产物,需经过多步加工才能产生成熟的、有功能的tRNA分子。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
双链体的结构特点
中文名称双链体英文名称duplex定 义双链核酸分子或单链分子中的一个双链区。应用学科遗传学(一级学科),分子遗传学(二级学科)
辅酶的结构功能特点
与酶蛋白结合疏松,用透析法容易与蛋白部分分开的有机小分子。 由于辅酶在酶催化反应中其化学组分发生了变化,因此可以认为辅酶是一种特殊的底物或者称为“第二底物”。这种所谓的第二底物可以被许多酶所利用。例如,已知有约七百种酶可以利用辅酶NADH进行催化。在细胞内,反应后的辅酶可以被再生,以维持其胞内浓度在
结构基因的功能特点
结构基因在理论上有如下两种功能:其核苷酸顺序决定一条多肽链(蛋白质链)一级结构上的氨基酸序列,即一个顺反子(cistron)(带着足以决定一个蛋白质分子的全部组成需要信息的最短DNA片段);其核苷酸顺序也决定一条多核苷酸链(如mRNA)的核苷酸顺序。一种结构基因对应于一种蛋白质分子。结构基因在调节基
脊索的结构功能特点
脊索的出现构成了支撑躯体的主梁,这个主梁使体重有了更好的受力者,体内内脏器官得到有力的支持和保护,运动肌肉获得坚强的支点,在运动时不致由于肌肉的收缩而使躯体缩短或变形。所有的这些虽然和节肢动物坚硬的几丁质 外鞘作用类似,但是由于脊索在体内,同时比几丁质外鞘有更好的的韧性,因而使脊索动物身体更灵活,体
过氧化物酶体的结构功能特点
过氧化物酶体由J. Rhodin(1954年)首次在鼠肾小管上皮细胞中发现。是一种具有异质性的细胞器,在不同生物及不同发育阶段有所不同。直径约0.2~1.5μm,通常为0.5μm,呈圆形,椭圆形或哑呤形不等,由单层膜围绕而成。共同特点是内含一至多种依赖黄素(flavin)的氧化酶和过氧化氢酶(标志酶
溴化乙锭结构功能特点
溴化乙锭是一种有机化合物,分子式为C21H20BrN3,是一种核酸染料,常在琼脂糖凝胶电泳中用于核酸染色,是一种强的诱变剂,可致癌或致畸。
中心体的基本结构、功能
中心体的基本结构、功能在超微结构水平,典型的真核细胞中心体由一对中心粒和其周围物质组成。中心粒周围为云状电子致密物,称为中心粒周围物质(PericentriolesMaterial,PCM),中心粒周围物质围绕2个中心粒。中心粒由9组三联体微管组成,形成一桶状结构。中心粒的直径为0.16~0.23μ
顺式作用元件的结构增强子的特点介绍
(1)增强子可提高同一条DNA链上基因转录效率,可以远距离作用,通常距离l~4kb,个别情况下离开所调控的基因30kb仍能发挥作用,而且在基因的上游或下游都能起作用。 (2)增强子作用与其序列的正反方向无关,将增强子方向倒置依然能起作用。而将启动子倒置就不能起作用,可见增强子与启动子是很不相同
同源双链体的结构特点
中文名称同源双链体英文名称homoduplex定 义物种中原有的双链DNA,或经变性复性后完全互补的双链DNA。应用学科遗传学(一级学科),分子遗传学(二级学科)
费城染色体的结构特点
费城染色体指9号染色体长臂(9q34)上的原癌基因abl转位至22号染色体(22q11)上的bcr(B-cell receptor)基因重新组合成融合基因。在大部分CML,部分ALL及少数急性髓细胞白血病中可见。
核糖体DNA的结构特点
核糖体DNA(Ribosomal DNA,rDNA)是一种DNA序列,该序列用于rRNA编码。核糖体是蛋白质和rRNA分子的组合,翻译mRNA分子以产生蛋白质的组件。真核生物的rDNA包括一个单元段,一个操纵子,以及由NTS、ETS、18S、ITS1、5.8S、ITS2和28S束组成的串联重复序列。
孢子体的结构和特点
孢子体在植物世代交替的生活史中,产生孢子和具2倍数染色体 的植物体。由受精卵(合子)发育而来。不同的植物其孢子体的形态、大小和营养方式也不同。
DNA结合模体的结构特点
中文名称DNA结合模体英文名称DNA-binding motif定 义DNA结合蛋白中与DNA发生相互作用的区域所具有的特定的结构模式。如锌指结构、亮氨酸拉链、螺旋-转角-螺旋、螺旋-环-螺旋等。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)
构象异构体的结构特点
种由C—C单键绕σ键旋转而产生的叫构象异构,所形成的异构体称为构象异构体.旋转而产生的异构体称为旋转异构体或构象异构体。当C—C单键旋转时,可以有无数个构象异构体,极限构象有顺叠、顺错、反错和反叠等。在顺叠构象中,两个碳上连接的氯原子和氯原子之间相距最近,产生强排斥作用,内能最高,属该分子最不稳定的
DNA三链体的结构特点
中文名称DNA三链体英文名称DNA triplex定 义DNA的一种特殊的结构,是由第三条核苷酸链通过胡斯坦碱基配对,与双螺旋DNA中的一条链以特殊的氢键相连形成的一种三股螺旋DNA结构。三股链均为同型聚嘌呤或聚嘧啶;第三个碱基以A或T与A≒T碱基对中的A配对;G或C与G≒C碱基对中的G配对,C必
甾体的种类和结构特点
甾体,是广泛存在于自然界中的一类天然化合物,包括植物甾醇、胆汁酸、C21甾类、昆虫变态激素、强心苷、甾体皂苷、甾体生物碱、蟾毒配基等。甾体化合物在结构上有一共同点,即具有环戊烷多氢菲的基本骨架结构,此外在环戊烷多氢菲母核上通常带有两个角甲基(C-10、C-13)和一个含有不同的碳原子数的侧链或含氧基
增强体的原料以及用途
(1)天然的植物和矿物纤维、片材和颗粒也用来作增强体,但仅适合于低性能的复合材料。(2)复合材料增强体发展较快,玻璃纤维、织物和毡的产量已逾千万吨级。而高性能的增强体虽然产量不大,但其性能已经很高,基本上满足高技术的要求 。
增强体的原料以及用途
(1)天然的植物和矿物纤维、片材和颗粒也用来作增强体,但仅适合于低性能的复合材料。(2)复合材料增强体发展较快,玻璃纤维、织物和毡的产量已逾千万吨级。而高性能的增强体虽然产量不大,但其性能已经很高,基本上满足高技术的要求 。