Antpedia LOGO WIKI资讯

钠基电池主要原理

钠离子电池中,钠离子可附着在肌醇上,而肌醇是一种常见的化合物,可从米糠或玉米加工过程中的液体副产物中提取。钠离子和肌醇的新结合显着改善钠基电池的离子循环,使离子能更加有效地从阴极移动穿过电解质到磷阳极,继而出现更强的电流。钠基和钾基电池面对的最大障碍之一是它们会更快地衰变和退化,且能量密度比锂离子电池更低。但情况并非总是如此。研究人员在研究了锂离子、钠离子和钾离子与硫化铁粒子的反应时发现:钠和钾与硫化铁在反应过程中更加稳定,这表明基于钠或钾的电池寿命可能比预期长得多。......阅读全文

酶法测定钠的原理

  酶法测定钠的原理是利用钠依赖的β-半乳糖苷酶催化人工底物ONPG(邻硝基酚β-D-吡喃半乳糖苷);分解释放出有色产物邻硝基酚,在波长420nm处测吸光度变化。  酶法测钾的原理是利用对丙酮酸激酶的激活作用,后者催化磷酸烯醇式丙酮酸变为乳酸同时伴有还原型辅酶Ⅰ的消耗,在波长340nm处测NADH的

钠钾ATP酶的原理

钠钾泵(也称钠钾转运体),为蛋白质分子,进行钠离子和钾离子之间的交换。每消耗一个ATP分子,逆电化学梯度泵出3个钠离子和泵入2个钾离子。保持膜内高钾,膜外高钠的不均匀离子分布。

普路通公告,拟与广东钠壹合资跨界布局钠电池领域

2月27日晚间,普路通(002769)公告,公司拟与广东钠壹新能源科技有限公司(以下简称“钠壹新能源”)共同出资设立控股子公司普钠时代新能源有限公司(以工商登记为准,以下简称“普钠时代”)。普钠时代注册资本1亿元,其中:公司出资6000万元,占注册资本的60%。钠壹新能源出资4000万元,占注册资本

中科海钠,计划明年实现级钠电池储能系统推广应用

 在2022钠离子电池产业链与标准发展论坛上,中科海钠总经理李树军表示,在材料产业化进程方面,该公司今年一期年产各2千吨正负极材料线已建设完成并运行半年;计划于2023年完成二期2万吨正极/1万吨负极材料线建设并投产;2024年完成10万吨正极/5万吨负极材料线建设并投产。在电芯产业化进程方面,拟于

显色培养基原理

  显色培养检测基本原理:利用不同种属细菌代谢所产生的酶的特异性,在培养基中加入相应的特异性酶底物和抑制剂,当具有某特异酶的细菌与酶底物作用时,使显色基团游离出来附着于菌落上,形成颜色独特的菌落。根据菌落的颜色直接对菌属(种)作出鉴定。  快速、简便、节省时间-大多数显色培养基只需在样品增菌后,分离

硅基全电池的其他重要参数

初始库仑效率(ICE)是全电池设计的关键,因为它对活性材料的利用率起着决定性的作用,从而影响适用电池的总重量。然而,大多数关于硅负极LIBs的研究都集中在实验室。在实验研究中,通常采用金属锂作为对电极,但锂通常过量,这使得第一次嵌锂过程中SEI膜形成和副反应引起的Li+损失不会显着恶化循环稳定性。在

锂电池锡基负极材料介绍

锡基负极材料:锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。

钠对人体的主要作用是什么

  钠是人体中的一种重要的无机元素。一般情况下,成人体内男女都含量很高,约占体重的0.15%。体内的钠主要是在细胞外液,细胞内液含量是较低的。钠是细胞外液中带正电的主要离子,参与了我们身体水的代谢,保证体内水的平衡,调节体内水分和渗透压。同时它也维持体内酸碱的平衡,也是胰液、胆汁、汗和泪水的主要成分

锂电池保护板原理主要零件的功能介绍

  R1:基准供电电阻;与IC内部电阻构成分压电路,控制内部过充、过放电压比较器的电平翻转;一般在阻值为330Ω、470Ω比较多;当封装形式(即用标准元件的长和宽来表示元件大小,如0402封装标识此元件的长和宽分别为1.0mm和0.5mm)较大时,会用数字标识其阻值,如贴片电阻上数字标识473, 即

简述血清培养基主要问题

  1. 血清的成份可能有几百种之多,对其准确的成份、含量及其作用机制不清楚,尤其是对其中一些多肽类生长因子、激素和脂类等尚未充分认识,这给研究工作带来许多困难。  2. 血清都是批量生产,各批量之间差异很大,而且血清保存期至多一年,因此,要保证每批血清的相似性极为困难,从而使实验的标准化和连续性受

培养基制备有几个主要步骤

培养基制备的四个主要步骤:1、计算:根据培养基配方的比例,计算各种成分的用量;2、称量:准确称取各种成分;3、溶化:将各种成分加入烧杯,加热,用玻璃棒搅拌溶解,加入琼脂使其熔化后,补加水至一定量;4、调节PH值。

培养基制备有几个主要步骤

培养基制备的四个主要步骤:1、计算:根据培养基配方的比例,计算各种成分的用量;2、称量:准确称取各种成分;3、溶化:将各种成分加入烧杯,加热,用玻璃棒搅拌溶解,加入琼脂使其熔化后,补加水至一定量;4、调节PH值。

钠钾ATP酶的工作原理

Na+-K+泵 ——实际上就是Na+-K+依赖式ATP酶,存在于动植物细胞质膜上,它有大小两个亚基,大亚基催化ATP水解,小亚基是一个糖蛋白。Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+,K+的亲和力发生变化,大亚基以亲Na+态结合Na+后,触发水解ATP。每水解一个AT

简述钠钾ATP酶的原理

  钠钾泵(也称钠钾转运体),为蛋白质分子,进行钠离子和钾离子之间的交换。每消耗一个ATP分子,逆电化学梯度泵出3个钠离子和泵入2个钾离子。保持膜内高钾,膜外高钠的不均匀离子分布。

钠钾ATP酶的工作原理

Na+-K+泵 ——实际上就是Na+-K+依赖式ATP酶,存在于动植物细胞质膜上,它有大小两个亚基,大亚基催化ATP水解,小亚基是一个糖蛋白。Na+-K+ATP酶通过磷酸化和去磷酸化过程发生构象的变化,导致与Na+,K+的亲和力发生变化,大亚基以亲Na+态结合Na+后,触发水解ATP。每水解一个AT

执着“钠”十年 钠离子电池迎来“破晓”

  当众多人聚焦锂离子电池的时候,他把目光转向了“冷门”的钠离子电池,这“一眼”就是10年,也是这“一眼”打开了钠离子电池产业化的大门。此时的胡勇胜,不仅是中国科学院物理研究所研究员,还是中科海钠的创始人。 不久前,中科海钠生产的全球首款具备自主知识产权的钠离子电池实现量产,目前电芯产能可达30

德国科学家研发钠-空气电池取得进展

  德国吉森大学、卡尔斯鲁尔研究中心以及巴斯夫公司的科研人员合作,用金属钠取代目前最常用的金属锂作为电极材料,设计了一种新的电能储存与释放方案-“钠-空气电池”,并研制出的电池样品。   “钠-空气电池”在电压约2.2伏的放电过程中,碱金属钠在碳材料的阴极上与空气中的氧元素结合成稳定的过氧化物,在

天力锂能表示,新型钠电池完成小试

近日,天力锂能在投资者互动平台表示,公司钠电正极材料研发进展顺利,目前已经完成小试,公司不直接生产钠电池。

中科海钠推出三款钠电池电芯产品 可实现规模化量产

2月23日,中科海钠举办产品发布会,针对不同应用场景,推出NaCR32140-ME12圆柱电芯、NaCP50160118-ME80方形电芯及NaCP73174207-ME240方形电芯三款钠电池产品。 据中科海钠总经理李树军介绍,中科海钠钠离子电池产品以铜基层状氧化物正极和煤基无定形碳负极为核心,基

锂电池的主要材料

碳负极材料实际用于锂离子电池的负极材料基本上都是碳素材料,如人工石墨、天然石墨、中间相碳微球、石油焦、碳纤维、热解树脂碳等。锡基负极材料锡基负极材料可分为锡的氧化物和锡基复合氧化物两种。氧化物是指各种价态金属锡的氧化物。没有商业化产品。氮化物没有商业化产品。合金类包括锡基合金、硅基合金、锗基合金、铝

动力电池的主要结构

动力电池精密结构件主要包括电芯外壳顶盖、钢/铝外壳、正负极软连接、电池软连接排等,对锂电池的安全性、密闭性、能源使用效率等均有直接影响。

锌空气电池的主要类型

①中性锌空气电池:结构与锌锰圆筒形电池的类同,也采用氯化铵与氯化锌为电解质,只是在炭包中以活性炭代替了二氧化锰,并在盖上或周围留有通气孔,在使用时打开;②纽扣式锌空气电池:结构与锌银扣式电池基本相同,但在正极外壳上留有小孔,使用时可打开;③低功率大荷电量的锌空气湿电池:将烧结或粘接式活性炭电极和板状

固体培养基的原理

  固体培养基的凝固剂一般不是微生物的营养成分,只起固化作用。理想的凝固剂应具备以下条件:不会被微生物分解利用;不会因高温灭菌而受到破坏;在微生物生长的温度范围内保持固体状态;对微生物及操作人员均无毒害作用;透明度好、凝固力强;价格低廉,配制方便。常用的凝固剂是琼脂。琼脂的主要成分是硫酸半乳聚糖,绝

石墨烯电池和锂电池的主要差异

1、储电量不同:一个锂电池(以最先进的为准)的比能量数值为180wh/kg,而一个石墨烯电池的比能量则超过600wh/kg。2、使用寿命不同:石墨烯的使用寿命是锂电池的两倍,并且在高温下也比锂电池更为耐用。3、工业化量产:石墨烯电池还没有工业化量产。锂电池最大的弊端就是安全性差,虽然爆炸的概率低,但

硅基混合能源电池研究取得重要进展

  在过去十年里,由于能源危机和全球变暖现象的出现,可再生能源和绿色能源的利用引起了广泛的关注。硅基太阳能电池以其低成本、高性能和大规模生产等特点得到人们的广泛肯定。   硅太阳能电池是目前最成熟的太阳能电池技术之一。光调控是一种有效提升太阳能电池性能的方法,如通过增强光吸收能力和制造各种金字塔表

新型纸基生物电池由细菌供电

  电池出现已有100多年,但时至今日,在某些偏远或资源有限的地区,这种我们惯用的日常用品却还属于奢侈品。而即将在美国化学学会第256届全国会议暨博览会上公布的一项最新成果——一种靠细菌发电的新型纸基生物电池,或许能改变这一状况,给这些地区带来低成本的新型能源。  这种新型电池是由美国纽约州立大学的

关于心房利钠肽的主要作用介绍

  心房利钠肽是由21~35个氨基酸残基组成的肽类激素,它能抑制近曲小管重吸收钠,抑制醛固酮和ADH的释放,因而具有促进钠、水排出的功用。  当心房扩展、血容量增加、血钠离子浓度增高或血管紧张素增多时,将刺激心房肌细胞合成释放ANP。ANP释放入血后,主要从4个方面影响水纳代谢:  ①减少肾素的分泌

培养基的成分主要包括有哪些

培养基(medium)是供微生物、植物和动物组织生长和维持用的人工配制的养料,一般都含培养基有碳水化合物,较长时间的贮存、植物和动物组织生长和维持用的人工配制的养料,一般都含有碳水化合物、含氮物质、无机盐(包括微量元素)以及维生素和水等,而贮存保管方面也稍有不同。一般培养基在受热、激素和血清、避光、

细胞培养基的主要成分

细胞培养基既是培养细胞中供给细胞营养和促使细胞生殖增殖的基础物质,也是培养细胞生长和繁殖的生存环境。组成及作用氨基酸组成蛋白质的基本单位。不同种类的细胞对氨基酸的要求各异,但有几种氨基酸细胞自身不能合成,必须依靠培养液提供,这几种氨基酸称为必需氨基酸。其中谷氨酰胺是细胞合成核酸和蛋白质必需的氨基酸,

自由基攻击人体的主要途径介绍

途径一抗氧化书籍自由基是无处不在的,自由基对人体攻击的途径是多方面的,既有来自体内的 ,也有来自外界的。当人体中的自由基超过一定的量,并失去控制时,这些自由基就会乱跑乱窜,去攻击细胞膜,去与血清抗蛋白酶发生反应,甚至去跟基因抢电子,对我们的身体造成各种各样的伤害,产生各种各样的疑难杂症。人类生存的环