Antpedia LOGO WIKI资讯

钠离子电池是什么?应用场景介绍

钠离子电池也是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。与锂离子电池相比,钠离子电池具有的优势有:(1)钠盐原材料储量丰富,价格低廉,采用铁锰镍基正极材料相比较锂离子电池三元正极材料,原料成本降低一半;(2)由于钠盐特性,允许使用低浓度电解液(同样浓度电解液,钠盐电导率高于锂电解液20%左右)降低成本;(3)钠离子不与铝形成合金,负极可采用铝箔作为集流体,可以进一步降低成本8%左右,降低重量10%左右;(4)由于钠离子电池无过放电特性,允许钠离子电池放电到零伏。钠离子电池能量密度大于100Wh/kg,可与磷酸......阅读全文

钠离子电池是什么?应用场景介绍

钠离子电池也是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠

钠离子电池是什么电池?钠离子电池的工作原理和优势

钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。钠离子电池的工作原理钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款186

钠离子电池是什么电池?钠离子电池的工作原理和优势

钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。钠离子电池的工作原理钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款186

钠离子电池的定义及应用

钠离子电池也是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠

新型钠离子电池开展应用示范

近日,中科院大连化学物理研究所研究员李先锋、副研究员郑琼团队自主研制出48V/10Ah磷酸盐基钠离子电池储能系统,并作为中低速电动车的动力电源开展应用示范。根据实测数据,在6~7摄氏度环境温度下,该动力电池系统续航里程达到35千米,系统比能量为90瓦时每千克。该系统由32个5安培小时钠离子软包电池,

钠离子电池及其应用现状和趋势

 1、钠离子电池产生的背景(1)锂钠同族,物化性质类似(2)锂资源稀缺,钠资源丰富锂资源的全球储量有限,锂元素在地壳中的含量仅为 0.0065%。随着新能源汽车的发 展对电池的需求大幅上升,资源端的瓶颈逐渐显现,成本较高限制了锂离子电池的大规模应用。钠资源储量非常丰富,地壳丰度为 2.64%,是锂资

钠离子电池的工作原理介绍

钠离子电池的工作原理钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。

钠离子电池的工作原理介绍

钠离子电池在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。

钠离子电池的主要材料介绍

钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。

钠离子电池技术应用现状及趋势

(1)钠离子电池的可预期成本优势明显  (2)新能源汽车电池需求量激增+双碳背景下的储能板块对电池需求的叠加(3)钠离子电池能量密度低,使用场景受限(4)钠离子电池还处于产业发展初期阶段钠离子电池从技术角度来说,完全具备作为储能手段的化学特性。从预期成本来说,比现有锂离子电池成本优势显著,并且在安全

锂离子电池储能电站应用场景

储能锂离子电池作为新兴应用场景也逐渐受到重视,储能是解决新能源风电、光伏间歇波动性,实现“削峰平谷”功能的重要手段之一。我国锂电储能在电力储能实际应用中,可再生能源并网、用户侧、电网侧以及辅助服务是四个最重要的领域。1、储能应急电源车储能应急电源车由锂离子电池组、逆变器、电池管理系统等组成,逆变器将

锂离子电池储能电站应用场景

储能锂离子电池作为新兴应用场景也逐渐受到重视,储能是解决新能源风电、光伏间歇波动性,实现“削峰平谷”功能的重要手段之一。我国锂电储能在电力储能实际应用中,可再生能源并网、用户侧、电网侧以及辅助服务是四个最重要的领域。1、储能应急电源车储能应急电源车由锂离子电池组、逆变器、电池管理系统等组成,逆变器将

锂电池的常见应用场景有哪些?

  (1)、数码/日用类:主要应用于各类数码产品,如手机、平板、笔记本电脑、电动玩具、充电宝、航模等。或日常使用的工具,如汽车钥匙、强光手电筒、内置锂电灯管、内置锂电便携式冰箱等。  (2)、动力类:主要应用于电动交通工具,如新能源小汽车、新能源客车等。(Tips:大部分电动自行车使用的是铅酸蓄电池

锂电池的常见应用场景有哪些?

  (1)、数码/日用类:主要应用于各类数码产品,如手机、平板、笔记本电脑、电动玩具、充电宝、航模等。日常使用的工具,如汽车钥匙、强光手电筒、内置锂电灯管、内置锂电便携式冰箱等。  (2)、动力类:主要应用于电动交通工具,如新能源小汽车、新能源客车等。(Tips:大部分电动自行车使用的是铅酸蓄电池,

锂电池的常见应用场景有哪些?

  (1)、数码/日用类:主要应用于各类数码产品,如手机、平板、笔记本电脑、电动玩具、充电宝、航模等。日常使用的工具,如汽车钥匙、强光手电筒、内置锂电灯管、内置锂电便携式冰箱等。  (2)、动力类:主要应用于电动交通工具,如新能源小汽车、新能源客车等。(Tips:大部分电动自行车使用的是铅酸蓄电池,

锂离子电池储能电站应用场景

储能锂离子电池作为新兴应用场景也逐渐受到重视,储能是解决新能源风电、光伏间歇波动性,实现“削峰平谷”功能的重要手段之一。我国锂电储能在电力储能实际应用中,可再生能源并网、用户侧、电网侧以及辅助服务是四个最重要的领域。1、储能应急电源车储能应急电源车由锂离子电池组、逆变器、电池管理系统等组成,逆变器将

钠离子电池高低温性能介绍

在-40℃低温下可以放出 70%以上容量,高温 80℃可以循环充放使用,这将在储能系统层面降低空调系统的功率配额,也可以降低温度控制系统的在线时间,进而降低储能系统的一次投入成本和运行成本。

磷酸铁锂电池的特点和应用场景

从材料来看,磷酸铁锂电池则是采用磷酸铁锂(LiFePO4)作为正极材料,用铁元素来做电池原料,磷酸铁锂晶体中的P-O键非常稳固,难以分解,即便在高温或过充时也不会发生结构崩塌发热或形成强氧化性物质,拥有良好的安全性。从结构上来讲,磷酸铁锂的优势则在于:成本更低、结构稳定、充放电循环寿命较长,但同时也

什么是钠离子电池?

钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。

钠离子电池的概念

钠离子电池(Sodium-ion battery),是一种二次电池(充电电池),主要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。

钠离子电池的特性

钠离子电池的特性直接决定了钠离子电池未来的应用场景。钠离子电池跟当前电动汽车行业普遍使用的铅酸电池和锂离子电池的特性差异大致可以总结为几点:   (1)能量密度方面:铅酸电池<钠离子电池<锂离子电池(2)安全性高,高低温性能优异(3)快充倍率高,有补能优势

钠离子电池跟锂离子电池的区别介绍

  钠离子电池:钠离子电池是一种二次电池(充电电池),重要依靠钠离子在正极和负极之间移动来工作,与锂离子电池工作原理相似。在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。  钠离子电池最重要的特点就是利用Na+代替了价格昂贵的Li+,因

钠离子电池有哪些优点?钠离子电池概念股有哪些?

钠离子电池的核心原材料储量更高、开采难度更低。数据表明,地壳当中钠的含量有2.75%,而且可以用海水制备金属钠,是储量丰富、可得性好的新能源电池材料。钠电池的BOM成本也比锂电池低20%,并且,比磷酸铁锂的成本更低。而且,高低温性能优异,在面对挤压、穿刺等情景时安全性也高,还具备快充能力。但是,钠离

HFSS算法及应用场景介绍(一)

前言相信每一位使用过HFSS的工程师都有一个疑问或者曾经有一个疑问:我怎么才能使用HFSS计算的又快又准?对使用者而言,每个工程师遇到的工程问题不一样,工程经验不能够直接复制;对软件而言,随着HFSS版本的更新,HFSS算法越来越多,针对不同的应用场景对应不同的算法。因此,只有实际工程问题切合合适的

HFSS算法及应用场景介绍(二)

IE算法是三维矩量法积分方程技术,支持三角形网格剖分。IE算法不需要像FEM算法一样定义辐射边界条件,在HFSS中主要用于高效求解电大尺寸、开放结构问题。与HFSS FEM算法一样,支持自适应网格技术,也可以高精度、高效率解决客户问题,同时支持将FEM的场源链接到IE中进行求解。HFSS-I

HFSS算法及应用场景介绍(三)

混合算法(FEBI,IE-Region,PO-Region,SBR+ Region)前面对频率内的各种算法做了介绍并说明了各种算法应用的场景,很多时候碰到的工程问题既包括复杂结构物理也包括超大尺寸物理,如新能源汽车上的天线布局问题,对仿真而言,最好的精度是用全波算法求解,最快的速度是采用近似算求解,

HFSS算法及应用场景介绍(四)

在HFSS中,使用eigenmode算法可计算三维结构谐振模式,并可呈现图形化空间的谐振电压波动,分析结构的固有谐振特性。依据谐振分析的结果,指导机箱内设备布局和PCB层叠布局,改善电磁兼容特性。图13、Eigenmode算法应用场景总结HFSS里面有各种不同的算法,有全波算法、近似算法以及时域算法

相对于锂离子电池钠离子电池的优点介绍

  1、与锂相比,钠具有相似的理化性质,且储量丰富,价格低廉;  2、原理上,钠离子电池的充电时间可以缩短到锂离子电池的1/5;  3、由于钠盐特性,允许使用低浓度电解液,可降低成本;  4、钠离子不与铝形成合金,负极可采用铝箔作为集流体,可降低成本和电池重量。  据了解,目前钠离子电池的能量密度只

钠离子电池的结构特点

钠离子电池使用的电极材料主要是钠盐,相较于锂盐而言储量更丰富,价格更低廉。由于钠离子比锂离子更大,所以当对重量和能量密度要求不高时,钠离子电池是一种划算的替代品。

钠离子电池的工作原理

  在充放电过程中,Na+在两个电极之间往返嵌入和脱出:充电时,Na+从正极脱嵌,经过电解质嵌入负极;放电时则相反。  新款18650钠离子电池,借助了钠离子转移(而不是锂离子)来存储和释放电能。