色谱分离的基本原理
色谱分离的基本原理如下:按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为: 吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物。 分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。......阅读全文
如何提高色谱分离效率
1.更换色谱柱,不同厂家的色谱柱分离度有所差别。2.品牌不换的话,换一根长一点的色谱柱。3.调节流动相极性,反相增加水相比例,正相增加醇类比例。4.调节流速,流速越慢分离度越好,当然还要考虑峰形。5.调节柱温(这个可能影响不会太大)6.调节流动相,比如:调节pH,加入离子对试剂,加入三氟乙酸或三乙胺
薄层色谱分离法
(一)薄层色谱法的特点 设备简单,操作方便。只须一块玻璃板和一个层析缸。分析原理与经典柱上色谱相同、但是在敞开的薄层上可以检查混合物的成分是否分开可观察。快速,展开的时间短。比纸上色谱快速。一般纸上色谱需要几小时至几十小时薄层色谱一般只需十几分钟或几十分钟。使用无机吸附剂,薄层色谱可以采用腐
如何提高色谱分离效率
1.更换色谱柱,不同厂家的色谱柱分离度有所差别。2.品牌不换的话,换一根长一点的色谱柱。3.调节流动相极性,反相增加水相比例,正相增加醇类比例。4.调节流速,流速越慢分离度越好,当然还要考虑峰形。5.调节柱温(这个可能影响不会太大)6.调节流动相,比如:调节pH,加入离子对试剂,加入三氟乙酸或三乙胺
如何提高色谱分离效率
1.更换色谱柱,不同厂家的色谱柱分离度有所差别。2.品牌不换的话,换一根长一点的色谱柱。3.调节流动相极性,反相增加水相比例,正相增加醇类比例。4.调节流速,流速越慢分离度越好,当然还要考虑峰形。5.调节柱温(这个可能影响不会太大)6.调节流动相,比如:调节pH,加入离子对试剂,加入三氟乙酸或三乙胺
色谱分离柱的选择
气相色谱法作为一种非常优异的分析方法的主要原因,就是其具有对多种气体成分(尤其是复杂气体混合物)先进行逐一分离,然后再鉴定的功能。而被测成份的分离功能是色谱分离柱来完成的。因此,色谱柱的选择是关系到能否检测出被测成份的关键环节。如果色谱柱不能把被测成份(包括已知成分和未知成分)一一分开,则检测
凝胶色谱的分离原理
一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。大分子物质由于直径较大,不易进入凝胶颗粒的微孔,而只能分布颗粒之间,所以在洗脱时向下移动的速度较快。小分子物质除了可在凝胶颗粒间隙中扩散外,还可以进入凝胶颗粒的微孔中,即进入
色谱分离技术的定义
色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。
如何提高色谱分离效率
如何提高气相色谱的分离度气相色谱仪使用过程中,样品复杂时容易分离不开.这是常见的提高气相色谱仪分离度的几种方法:(1).适当的增加柱长可以提高分离度。(2).减少样品的进样量(固体样品加大溶剂量降低浓度)。(3).提高进样水平防止造成两次进样。(4).降低载气的压力和流速。(5).降低色谱柱的温度使
常见色谱仪的色谱分离原理
高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。 1.液固色谱法:使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或氧化铝
常见色谱仪的色谱分离原理
高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。 1.液固色谱法:使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或
离子色谱的分离方式—离子排斥色谱
由于 Donnan 排斥,完全离解的强电解质受排斥而不被固定相保留,而未离解的化合物不受 Donnan 排斥,能进入树脂的内微孔,分离是基于溶质和固定相之间的非离子性相互作用。被分离的化合物再经过不同检测器的测定,可成功地分析无机弱酸(如:硼酸、氟、亚砷酸、氢氰酸、氢碘酸、硅酸、亚硫酸和碳酸)和
常见色谱仪的色谱分离原理
高效液相色谱法按分离机制的不同分为液固吸附色谱法、液液分配色谱法(正相与反相)、离子交换色谱法、离子对色谱法及分子排阻色谱法。 1.液固色谱法:使用固体吸附剂,被分离组分在色谱柱上分离原理是根据固定相对组分吸附力大小不同而分离。分离过程是一个吸附-解吸附的平衡过程。常用的吸附剂为硅胶或
液相色谱仪色谱柱的分离条件
多数液相色谱仪色谱柱有很宽的试验条件范围,但具体应用又受到限制,主要是pH值、柱温和流动相的选择。 传统硅胶为基质的键合相要求pH值在2~8之间,极端pH值的流动相能“溶解”硅胶,使键合相流失。结构非碱性组分的保留不断减少,碱性组分的保留增加,引起碱性组分峰变宽。如果一定要用高或低pH值的流动相
离子色谱的分离方式—离子对色谱
在流动相中加入一种与待分离的离子电荷相反的离子,使其与待测离子生成疏水性化合物。经分离柱分离后,再用不同的检测器进行测定。可用于分离一般阴离子和金属络合物,也可分离多种胺类,并对阴、阳离子类的表面活剂有较好的分离效果。
液相色谱仪色谱柱的分离条件
多数液相色谱仪色谱柱有很宽的试验条件范围,但具体应用又受到限制,主要是pH值、柱温和流动相的选择。 传统硅胶为基质的键合相要求pH值在2~8之间,极端pH值的流动相能“溶解”硅胶,使键合相流失。结构非碱性组分的保留不断减少,碱性组分的保留增加,引起碱性组分峰变宽。如果一定要用高或低pH值的流动相,
超高效液相色谱提高色谱分离能力
通过超高效液相色谱(ACQUITY UPLC)提高色谱分离能力并减少溶剂用量 在当今的经济形势下,需要以较少的资源实现更多成果,而“快速”是分析化学领域内经常听到的一个主题。液相色谱法已成为药物分析、环境监测、食品检验和水质监测等领域内众多定量及定性分析的主要工具。通过ACQUITY UP
色谱法的分离原理
GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离,待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建
色谱仪分离的本质
在色谱仪分离中,将样品注入色谱柱,样品会很快在固定相和流动相之间达到分配平衡。当流动相流过时,样品将在流动相和新的固定相之间又达到分配平衡。同时,原来仍在固定相中的样品与新的流动相也会形成新的分配平衡。随着流动相不断的流过,达到分配平衡后存在于流动相的样品沿着色谱柱向前移动。由于此过程涉及到两相之间
影响置换色谱分离的因素
1. 置换剂(1) 置换剂的选择 置换剂的选择是置换色谱能否成功地分离和纯化目标产物的关键因素之一。理想的置换剂必须符合以下条件:●与样品中其它组分相比, 对固定相的吸附力最强, 而且呈现L angm u ir 吸附行为;●化学稳定性好, 不与样品中任何组分发生反应;●易溶于流动相, 且能快速完成色
吸附色谱分离方法的建立
吸附色谱在色谱分离中占有非常重要的地位,只要吸附剂和流动相选择得当,几乎可以用来分离所有类型的化合物。目前大多数液一固色谱分离都是以全多孔硅胶为固定相。考虑到柱子的耐久性和可靠性,在常规工厂生产控制和不太困难的分离中,用薄壳型硅胶柱往往是更好的选择,因为薄壳填料柱易于制备、不容易堵塞,并且容易平
色谱仪分离的本质
在色谱仪分离中,将样品注入色谱柱,样品会很快在固定相和流动相之间达到分配平衡。当流动相流过时,样品将在流动相和新的固定相之间又达到分配平衡。同时,原来仍在固定相中的样品与新的流动相也会形成新的分配平衡。随着流动相不断的流过,达到分配平衡后存在于流动相的样品沿着色谱柱向前移动。由于此过程涉及到两相之间
色谱分离改变的故障处理
色谱分离zui常见问题是峰形、分离状况、洗脱时间或性能改变。可以分两个步骤来处理不可接受的色谱分离。首先,从色谱方面来评价存在的问题,其次,对产生问题的原因进行独立分析。 评价色谱分离时使用标准品而不是样品。每次进样时应该做好样品的特性和色谱性能记录,这样需要作比较时能够提供历史数据。 下面
色谱法的分离原理
色谱法的分离原理 : 当混合物随流动相流经色谱柱时,就会与柱中固定相发生作用(溶解、吸附等),由于混合物中各组分物理化学性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按一定顺序从柱中流出。这种利用各组分在两相中性能上的
色谱仪分离机理
色谱仪是利用样品各组分在固定相和流动相中分配或吸附等作用的差异,使各组分在作相对运动的两相中反复多次受到上述各作用而达到相互分离。组分要完全分离,两峰间的距离必须足够远,两峰间的距离是由组分在两相间的分配系数决定的,即与色谱过程的热力学性质有关。但是两峰间虽有一定距离,如果每个峰都很宽,以致彼此重叠
高校液相色谱分离原理
分离原理是根据被分离的组分在流动相和固定相中溶解度不同而分离,分离过程是一个分配平衡过程。高效液相色谱主要有4种,下面分别描述一下。1、液-固吸附色谱。固定相是固体吸附剂,它是根据物质在固定相是吸附作用差异来分离的。吸附作用越强,K值越大保留时间越长。2、液-液分配色谱。顾名思义,它是将固定液涂在担
离子色谱的分离机理
按照分离机理,离子色谱可分为高效离子交换色谱(HPIC)、离子排斥色谱(HPIEC)和离子对色谱(MPIC)三种。用于三种分离方式的柱填料的树脂骨架都是苯乙烯和二乙烯苯的共聚物。HPIC用低溶量的离子交换树脂,HPIEC用高容量的树脂,MPIC用不含离子交换基团的多孔树脂。 高效离
气相色谱的分离原理
气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。
色谱分离进样方式介绍
色谱分离要求在最短的时间内,以“塞子”形式打进一定量的试样,进样方法可分为:1、气体试样:大致进样方法有四种:(1)注射器进样(2)量管进样(3)定体积进样(4)气体自动进样。一般常用注射器进样及气体自动进样。注射器进样的优点是使用灵活,方法简便,但进样量重复性较差。气体自动进样是用定量阀进样,重复
离子色谱的分离机理
离子色谱是液相色谱的一种,故又称离子色谱(HPIC)或现代离子色谱,其有别于传统离子交换色谱柱色谱的主要是树脂具有很高的交联度和较低的交换容量,进样体积很小,用柱塞泵输送淋洗液通常对淋出液进行在线自动连续电导检测。分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可
色谱法的分离原理
凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图1