引起光谱峰发生蓝移红移的原因

一般而言溶剂的极性改变、分子的共轭程度改变会引起光谱的移动。比如,极性溶剂中紫外吸收光谱会比非极性溶剂中测量的紫外吸收光谱有更大的红移。另外,对应共轭程度更大的分子,其紫外吸收光谱会有较大程度的红移。反之,会出现蓝移的现象。......阅读全文

为什么激发光谱的峰波长小于发射光谱的峰

为什么激发光谱的峰波长小于发射光谱的峰通常是发射光谱的波长大于激发光谱的波长,斯托克斯位移。激发波长小于发射波长,由激发态返回基态过程中有无辐射和辐射两种过程适放能量。荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态

拉曼光谱如何分峰

对你研究的对象不熟悉,但是一般而言,包络线里的不同峰是需要对研究物质的成分有一定预估之后再进行的,需要大致了解研究对象含有哪些成分,根据这些成分判断其振动峰在哪个波数范围,然后在进行谱峰的拟合或者包络线的分峰。

拉曼光谱如何分峰

对你研究的对象不熟悉,但是一般而言,包络线里的不同峰是需要对研究物质的成分有一定预估之后再进行的,需要大致了解研究对象含有哪些成分,根据这些成分判断其振动峰在哪个波数范围,然后在进行谱峰的拟合或者包络线的分峰。

拉曼光谱如何分峰

对你研究的对象不熟悉,但是一般而言,包络线里的不同峰是需要对研究物质的成分有一定预估之后再进行的,需要大致了解研究对象含有哪些成分,根据这些成分判断其振动峰在哪个波数范围,然后在进行谱峰的拟合或者包络线的分峰。

常见红外光谱峰位置

  当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和

红外光谱分析法红外光谱峰的位置、峰数与强度

1.位置:由振动频率决定,化学键的力常数 K 越大,原子折合质量 m 越小,键的振动频率越大,吸收峰将出现在高波数区(短波长区);反之,出现在低波数区(高波长区);2.峰数:分子的基本振动理论峰数,可由振动自由度来计算,对于由 n 个原子组成的分子,其自由度为3 n3n= 平动自由度+振动自由度+转

紫外可见光谱的峰面积

峰面积的积分基本没意义.只有峰有意义.UA本身就不是很精确的机子.其中A与C成正比

红外光谱的倍频峰在哪里

基频峰:分子吸收一定频率的红外线。如果振动能级从声态跃迁到第一激发态,则固有吸收峰称为基频峰。

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

氮化碳拉曼光谱峰的位置

C—N 的形式成键,C—N 不在这个位置,因而将中心在1 890cm 叫的峰归属为Cj —N 的吸收峰.o气5削憩圈5氮化碳薄膜的拉曼光谱圈.

氮化碳拉曼光谱峰的位置

C—N 的形式成键,C—N 不在这个位置,因而将中心在1 890cm 叫的峰归属为Cj —N 的吸收峰.o气5削憩圈5氮化碳薄膜的拉曼光谱圈.

红外吸收光谱主要的吸收峰

紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

氮化碳拉曼光谱峰的位置

C—N 的形式成键,C—N 不在这个位置,因而将中心在1 890cm 叫的峰归属为Cj —N 的吸收峰.o气5削憩圈5氮化碳薄膜的拉曼光谱圈.

红外吸收光谱主要的吸收峰

紫外无吸收,表明该化合物中没有存在共轭体系。在3000左右的峰表明该化合物中可能有:炔h、烯氢、醛基h或烷基h;1650左右的吸收峰,则表明体系中存在羰基c=o,可能是酸、醛酮、酰胺、酯或酸酐之类的

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、收集系统、分光系统和检测

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

拉曼光谱峰位对照表

拉曼光谱峰位对照表如下:拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。电化学原位拉曼光谱法的测量装置主要包括拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、

为什么激发光谱有两个峰,而荧光光谱只有一个峰

不知道你说的是不是激光拉曼光谱和荧光光谱,从现象来看应该是由于激光的强度较高,可能会激发出相应的拉曼散射光,而荧光仪器一般是由氙灯做激发光源,强度没有激光高,虽然也能得到拉曼散射光,但很有可能所得到的光谱不全。

引起光谱峰发生蓝移红移的原因

一般而言溶剂的极性改变、分子的共轭程度改变会引起光谱的移动。比如,极性溶剂中紫外吸收光谱会比非极性溶剂中测量的紫外吸收光谱有更大的红移。另外,对应共轭程度更大的分子,其紫外吸收光谱会有较大程度的红移。反之,会出现蓝移的现象。

红外光谱怎么看有几种吸收峰

3250-3500cm-1一般是-NH,-NH2以及-OH的伸缩振动,当然,如果没有这些基团而在3400有峰说明样品吸潮,这是水峰2700-3100一般是甲基、亚甲基及次甲基的伸缩振动2400-2600是铵盐伸缩振动2200-2300这个位置的吸收峰只有2种,炔基或者氰基,吸收峰强度中等1650-1