我国学者发现光驱动可编程胶体自组装新机制
4月17日,中国科学技术大学,该校物理学院彭晨晖教授团队,利用光驱动偶氮苯分子的协同效应诱导液晶分子的集体运动及重新排列,同时引发向列相中向错线的时空演变,从而实现了胶体颗粒的集体传递和可重构自组装。研究成果日前发表于《美国科学院院刊》。液晶是一类分子取向长程有序的各向异性材料,其在显示、感应、光子器件等领域有广泛应用。研究团队首先利用自搭建的装置,通过预设计的方式控制偶氮苯分子机器排列,从而控制液晶微结构自组装,并制备了可编程控制的向错线网络。在光驱动作用下,偶氮苯分子机器的协同作用引起衬底表面液晶微结构分子取向的变化,从而引发样品内部向错网络的群体动力学形态变化。如果将胶体颗粒置于此远离平衡态的系统中,随着光驱动向错线网络的形变,胶体颗粒可以被灵活地捡起、运输和重新组装。不仅如此,胶体自组装的集体运输和重组还可以通过控制照射光的偏振方向,控制它们运输的方向和方式,比如平移、以顺时针方向或者逆时针方向旋转,从而实现了微米尺度胶......阅读全文
液晶按分子排列方式分类
依其分子排列方式,分为向列型(Nematic)、距列型 (Smectic)、胆固醇型(Cholesteric)、圆盘型(Disotic)。
溶致性液晶按形成高分子液晶的单体结构分类
分为两亲型和非两亲型。
新型液晶高分子材料有望重用
小到电子表、计算器上的液晶数字显示,大一点到手机屏幕,再大些到液晶电视,上述物品中大多是液晶小分子在发挥作用。液晶高分子则是把大量液晶分子单元连接在一起形成的聚合物,近几十年来相关技术发展迅速。作为新型液晶材料,液晶高分子的结构更为复杂,性能趋于多样,在航天航空科技、生物材料、能源信息等领域具有
智能液晶高分子薄膜会变色、有记忆、能自愈
前主流的变色材料主要由无机分子或者可变色的染料分子构成。天津大学封伟教授团队用高分子制备出一种厚度只有200微米,具有变色、记忆和自愈合功能的智能变色液晶高分子薄膜,这种薄膜在多个领域展现出应用前景。新买的包包可以随意变换颜色,不小心刮破的衣服能像皮肤一样愈合……这些似乎只在科幻电影里出现过的场景,
化学所高分子胶体可控合成研究取得进展
盘状胶体作为典型的各向异性胶体之一,是自组装构建复杂层级结构的理想单元,也是研究自组装、玻璃化转变、扩散、颗粒流变学、介晶相行为中许多基本物理化学问题的有效模型。目前,合成单分散、形状可控、表面化学清晰的高分子盘状胶体仍缺少普适性方法。 最近,在国家自然科学基金委员会和中国科学院的支持下,中
溶致性液晶按液晶基元排列方向分类
按液晶基元排列方向分为单畴型和多畴型液晶。
岛津公司积极参与2010中国液晶及超分子学术会
2010年两岸三地高分子液晶态与超分子有序结构学术讨论会于2010年8月23日至26日在中国郑州隆重举行。这是国内液晶及超分子学术界最高规模的学术会议,吸引了大量专家学者,就该领域的热点问题和研究成果进行了交流。 中国在液晶和超分子研究领域目前处在国际
液晶的物理特性
当通电时导通,排列变得有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。让液晶如闸门般地阻隔或让光线穿透。从技术上简单地说,液晶面板包含了两片相当精致的无钠玻璃素材,称为Substrates,中间夹着一层液晶。当光束通过这层液晶时,液晶本身会排排站立或扭转呈不规则状,因而阻隔或使光束顺利通过。
液晶态的定义
液晶态------长程取向有序,部分位置有序或完全位置无序的一种介晶态;
溶致性液晶按致晶单元与高分子的连接方式分类
按致晶单元与高分子的连接方式分为主链型液晶、侧链型液晶、树枝状液晶、复合型液晶和嵌段型液晶。
液晶温控器怎么样-液晶温控器功能介绍
壁挂炉、地暖系统等成为许多人家中的采暖设备,它们能够将家中的温度维持在一个相对舒适的范围。那么如何才能够控制家中的温度呢?温控器就能做到。接下来就为您介绍液晶温控器。 温控器由单片机对其测量温度与设定温度进行比较,控制 中央空调 末端的 风机盘管 、电动阀、电动风阀、电动风口,使所控环境温度恒
研究发现光驱动可编程胶体自组装新机制
原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498845.shtm中国科学技术大学物理学院教授彭晨晖团队结合光驱动分子马达与向列相液晶分子具有长程有序和取向可控的特点,利用光驱动偶氮苯分子的协同效应诱导液晶分子的集体运动及重新排列,同时引发向列相中向
我学者发现光驱动可编程胶体自组装新机制
记者17日从中国科学技术大学获悉,该校物理学院彭晨晖教授团队,利用光驱动偶氮苯分子的协同效应诱导液晶分子的集体运动及重新排列,同时引发向列相中向错线的时空演变,从而实现了胶体颗粒的集体传递和可重构自组装。研究成果日前发表于《美国科学院院刊》。液晶是一类分子取向长程有序的各向异性材料,其在显示、感应、
我国学者发现光驱动可编程胶体自组装新机制
4月17日,中国科学技术大学,该校物理学院彭晨晖教授团队,利用光驱动偶氮苯分子的协同效应诱导液晶分子的集体运动及重新排列,同时引发向列相中向错线的时空演变,从而实现了胶体颗粒的集体传递和可重构自组装。研究成果日前发表于《美国科学院院刊》。液晶是一类分子取向长程有序的各向异性材料,其在显示、感应、光子
液晶的研究与应用
1850年普鲁士医生鲁道夫·菲尔绍(Rudolf Virchow)等人就发现神经纤维的萃取物中含有一种不寻常的物质。1877年德国物理学家奥托·雷曼(Otto Lehmann)运用偏光显微镜首次观察到了液晶化的现象。1883年3月14日植物生理学家斐德烈·莱尼泽(Friedrich Reinitze
什么是柱状液晶相?
柱状液晶相------由堆叠成柱状的分子形成的相;
什么是板状液晶?
板状液晶------由板状的分子构成的介晶化合物;
液晶投影仪简介
液晶投影机的兴起主要是内部一个极关键零组件LCD,因笔记型电脑(Notebook PC)及携带式DVD随身听的大量应用,使得LCD受到重视。 LCD投影机是液晶技术、照明科技以及集成电路的发展带来的高科技产物。其关键技术是液晶板的制造。LCD投影机利用液晶的光电效应,即液晶分子的排列在电场作用
液晶材料的应用介绍
液晶的电光效应是指它的干涉、散射、衍射、旋光、吸收等受电场调制的光学现象。根据液晶会变色的特点,人们利用它来指示温度、报警毒气等。例如,液晶能随着温度的变化,使颜色从红变绿、蓝。这样可以指示出某个实验中的温度。液晶遇上氯化氢、氢氰酸之类的有毒气体,也会变色。液晶在液晶显示器的广泛使用,依赖于电场的存
液晶氢气发生器
液晶氢气发生器仪器规格和参数输出流量:0-500ml/min;输出压力:0-0.4Mpa压力稳定性:99.999%zui大功率:180W输出接口:3mm或1/8in(M8×1外螺纹)液罐容积:1.2升消耗水量:25ml/h水质要求:电阻率≥1MΩ/cm电源电压:AC 220V (50/60 Hz)
液晶的应用历史介绍
1972年Gruen Teletime,第一支使用液晶显示器的手表。1973年Sharp EL-805,第一台使用液晶显示器的计算器。1973年日本的声宝公司首次将液晶它运用于制作电子计算器的数字显示。液晶是笔记本电脑和掌上计算机的主要显示设备,在投影机中,它也扮演着非常重要的角色。1981年EPS
液晶的研究方法介绍
偏光显微镜利用液晶态的光学双折射现象,在带有控温热台的偏光显微镜下,可以观察液晶物质的织构,测定转变温度。所谓织构,一般指液晶薄膜(厚度约10-100微米)在光学显微镜,特别是正交偏光显微镜下用平行光系统所观察到的图像,包括消光点或者其他形式的消光结构乃至颜色的差异等。热分析热分析研究液晶态的原来在
液晶的光电特性研究
液晶分子的结构具有异方性(Anisotropic),所以所引起的光电效应就会因为方向不同而有所差异,简单的说也就是液晶分子在介电系数及折射系数等等光电特性都具有异方性,因而我们可以利用这些性质来改变入射光的强度,以便形成灰阶,来应用于显示器组件上。液晶的光电特性,大约有以下几项:1.折射系数(ref
胶体果胶铋
性状本品为黄色粉末;无臭本品在乙醇等有机溶剂中不溶,在水中结块,振摇后能均匀分散在水中。鉴别(1)取本品约5mg,加水10ml,搅拌,用稀硫酸3~5滴酸化,生成絮状沉淀,加10%硫脲溶液数滴,即生成深黄色(2)取本品10mg,加水25m,搅拌,用稀硫酸3~5滴酸化后,生成絮状沉淀,加碘化钾试液,即生
胶体金
制备好免疫胶体金后,还需要将其稀释到一定浓度,并吸附于特殊的惰性介质中才能够最终制成产品。一般来说,特殊的介质常用的是玻璃纤维或无纺布。玻璃纤维和无纺布本身一般是疏水的,胶体金产业一般采用表面活性剂预处理过的玻璃纤维或无纺布,通常配方为1%Tween20+适量PVA。 介质处理完成后,免疫胶体
亲水胶体转化为疏水胶体是什么?
抗体是球蛋白,大多数抗原亦为蛋白质,它们溶解在水中皆为胶体溶液,不会发生自然沉淀。这种亲水胶体的形成机制是因蛋白质含有大量的氨基和羧基残基,这些残基在溶液中带有电荷,由于静电作用,在蛋白质分子周围出现了带相反电荷的电子云。如在pH7.4时,某蛋白质带负电荷,其周围出现极化的水分子和阳离子,这样就形成
什么是棒状液晶相?
棒状液晶相------由棒状或板条状分子结构的分子或大分子形成的一种液晶相;
液晶检查显微镜简述
主要特点: UIS无限远校正光学系统,提供出色的图像质量; 人机工程学的进一步改善,使操作更为舒适; 多种高度功能化的附件,能满足各种检验需要。 用途: 针对半导体工业、硅片制造业、电子信息产业、治金工业开发的,作为工业显微镜使用。可进行明暗场观察、落射偏光、DIC观察,广泛
液晶投影仪的组成
液晶投影机主要由光源,液晶板及驱动电路、光学系统(包括照明系统、分色合色系统、投影成像系统)等部分构成。如图7—3所示。其中光学系统不但复杂,牵涉的技术层面及范畴也相当广泛,包括光学规格量测、光学系统架构、光学设计、光源模组、分合光元件、投影镜头及银幕等。至于LCD液晶模组则是控制投影机显示影像
碟型液晶的特点与应用
碟型液晶(discotic)碟型液晶发现1970年代,是具有高对称性原状分子重叠组成之向列型或柱行系统。 [3] 依分子量来分,有低分子型和高分子型,在高分子的液晶有主链型和侧链型。依温度的因素,有互变转换型(Enantiotropic)、单变转换型(Monotropic)。