Antpedia LOGO WIKI资讯

中国科大研制出生物合成的纤维素基绝缘纳米纸

随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线(UV)环境、原子氧(AO)和高低温交替环境等,已经成为今后探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对极端环境的耐受性,但金属材料面临密度过高、重量过大的问题,而陶瓷材料则面临脆性和难以加工等问题。另一方面,虽然聚合物具有轻质和可塑的特点,但目前大多数聚合物基复合材料在极端环境长期服役会产生高温软化和低温脆性等问题。因此,设计和制备一种能长期在极端环境下服役的高性能防护材料是材料领域面临的难题之一。近日,中国科学院院士、中国科学技术大学教授俞书宏团队报道了一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。该纳米纸是通过该研究团队早期发展的气溶胶辅助生物合成(AABS)方法,利用细菌产出的纤维素纳米纤维(BC)......阅读全文

中国科大研制出生物合成的纤维素基绝缘纳米纸

随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线(UV)环境、原子氧(AO)和高低温交替环境等,已经成为今后探索的主要障碍。在这些极端环境下,材料的物理化学特性会发生变化,严重时甚至会导致重要设备和装置的损坏。在传统材料当中,金属和陶瓷本身具有出色的机械性能和对

用细菌制造出高性能绝缘纳米纸

中国科学技术大学俞书宏院士团队研制出了一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。复合纳米纸的的制备与结构示意图 中国科大供图随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替

纳米纸开辟“魔法”未来

透明、可弯曲、可降解的纳米纸晶体管(照片由同济大学提供)。 像纸一样薄的碳纳米缆绳的强度,就足以支撑起一架“太空电梯”。   近日,一些有关“纳米纸”的报道,引起许多人的兴趣。比如有报道称,浙江大学的科学家制作出一种新型“纳米纸”,这种材料还能与多种化学分子结合,制造出不同用途的新材料,实现抗菌

纳米纸有机晶体管问世

  近日,同济大学材料科学与工程学院教授黄佳、美国马里兰大学材料科学与工程系教授Hu Liangbing等共同完成的研究论文《全透明可弯曲纳米纸晶体管》,在线发表于纳米科学技术领域权威期刊ACS Nano。   “透明化、可弯曲是电子产品未来发展的两个重要方向。这一成果最大的创新点,是将全透明

纳米纸有机晶体管问世

  近日,同济大学材料科学与工程学院教授黄佳、美国马里兰大学材料科学与工程系教授Hu Liangbing等共同完成的研究论文《全透明可弯曲纳米纸晶体管》,在线发表于纳米科学技术领域权威期刊ACS Nano。   “透明化、可弯曲是电子产品未来发展的两个重要方向。这一成果最大的创新点,

神奇纳米纸 百毒不侵

  今后,食品只用一张薄纸包裹,就能防水防菌。这张神奇的纸,叫“纳米纸”。昨天,它的发现人——浙江大学化学系教授黄建国,为本报记者揭开了这个神奇之谜。   这是一张百毒不侵的纸   纳米纸,看上去与普通纸无异。可它的功能,却十分强大。在纸上加不同的化学物质,就能派上大用场。   比如,可以成为

“细菌造”纳米纸经得起极端环境考验

  4月18日,科技日报记者从中国科学技术大学获悉,该校俞书宏院士、管庆方副研究员等科研人员,利用合成云母和细菌纤维素,合成了一种具有优异机械和电绝缘性能,对极端条件具有良好耐受性的纳米纸张材料,该材料表现出优异的交替高温和低温耐受性、抗紫外线和原子氧特性。这项研究成果日前发表在《先进材料》上。  

材料应用功能“百搭”纳米纸

材料应用功能“百搭”纳米纸  浙江大学的科学家用滤纸和二氧化钛薄膜制作出一种新型“纳米纸”,这种材料能继续与多种化学分子结合并展现不同特性,实现材料应用上的“百搭”。  “通过前体物溶液浸润再水解的方式,可以让二氧化钛薄膜包裹在滤纸的纳米纤维上,之后再用含有其他化学分子的溶液继续浸润纳米纸

生物医用磷灰石纳米粒子的控制合成、表征

米粒子由于其纳米效应而表现出许多既不同于宏观物质也不同于单个孤立原子的特异性能,这些特异性能使得纳米粒子具有许多新的用途。论文就生物医用纳米磷灰石溶胶的制备、表征、纳米颗粒形貌和尺寸控制及纳米磷灰石溶胶稳定性研究等方面展开研究。主要目的是获得尺寸均匀稳定、分布范围窄的纳米磷灰石,获取指定形貌的磷灰石

生物合成黑色素纳米颗粒有望用于光热治疗

光热治疗作为一种肿瘤光学治疗策略,可以有针对性地在局部杀死癌细胞,在恶性肿瘤治疗方面具有微创、长效、安全等特点。但许多光热疗剂由于生物相容性差、生产和加工过程反应方法复杂、反应条件苛刻等治疗效果并不理想。 因此,在环境友好的条件下开发生物相容性好的光热疗剂具有重要的研究意义。而黑色素作为一种多功

超声波提取生物纳米(超声波化学合成法)

超声波化学反应中,起关键作用的是声波的空化效应,在超声波的辐照过程中,在液体里将发生空化气泡的形成,长大和崩灭,当空化气泡崩灭时产生一个覆盖着的强压力脉冲,产生许多独特的性质,例如产生高达5000K的高温,大于200Mpa的压力,以及高达1010K/p的降温速度,这就是超声波化学合成的能量来源,Kc

纸基生物传感器

  纸基生物传感器正成为满足环境保护需求的医疗诊断传感器。  用于诊断的生物传感器  家庭可使用(Home-based)的生物传感器已经改变了社会对医疗诊断的看法。生物传感器是能够通过换能器将目标分析物的生物信息转化为定量信号的集成式分析装置。生物传感器的设计一般为一次性测试条,在现场进行快速、简单

我国科学家制出绝缘纳米新材料

合肥5月25日电近日,中国科学技术大学俞书宏院士团队研制出一种高性能纤维素基纳米纸材料,其在极端条件下仍可保持优异的机械和电绝缘性能。相关成果日前发表于《先进材料》。随着人类对南极洲、月球和火星等极端环境探索的深入,不断出现的极端环境条件,包括强紫外线环境、原子氧和高低温交替环境等,成为今后深入探索

上海硅酸盐所研制出新型羟基磷灰石超长纳米线基生物纸

  羟基磷灰石是脊椎动物骨骼和牙齿的主要无机成分,具有优良的生物相容性和生物活性,在生物医学领域具有良好的应用前景。然而,由单一羟基磷灰石组成的材料通常脆性高,柔韧性差,难以加工成各种生物医学应用所需的特定形状。此外,在一些特定的生物医学应用中需要使用柔性生物材料。为此,设计合成具有良好柔韧性和优异

美合成“人造森林”纳米系统

  就在媒体大肆喧嚣大气中二氧化碳含量已达到300万年来最高值的当下,美国能源部(DOE)劳伦斯伯克利国家实验室的科学家们在最新一期《纳米快报》上报告说,他们在开发碳中和可再生能源技术——首个全集成人工光合作用纳米系统上取得了重要进展。   主持该项研究的伯克利实验室材料科学部化学家杨培栋(音译)

日本首次合成碳纳米带

   日本名古屋大学的研究组最近首次成功合成了国际学界60年前理论上提出的筒状碳分子“碳纳米带”。碳纳米带比同样为筒状结构的碳纳米管(CNT)短,用于铸模可获得期望结构的碳纳米管,将促进碳纳米管的迅速普及。该成果发表在4月14日的《科学》杂志的电子版上。   研究组在合成无扭曲带状分子的基础上,设计

用石墨烯和蛋白纤维合成的纸本事大

  据物理学家组织网5月7日报道,瑞士联邦理工学院的研究小组将蛋白纤维和石墨烯混合,由此制成的新型纳米复合纸“多才多艺”,可记忆形状、测量酶的活性,也可完全生物降解。该研究成果刊登在最新一期的《自然—纳米技术》期刊上。   这个研究小组带头人、该大学食品和软质材料科学教授拉斐尔说,这种新型“纸”

上海光机所等在微生物合成Te纳米晶方面取得进展

  近期,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室研究员王俊团队、激光与红外材料实验室研究员张龙团队等与国内外机构合作,揭示了微生物合成Te纳米材料及其共轭聚合物复合材料优异的超快非线性光学特性,证实了其在超短脉冲产生、全光开关等领域的重要应用潜力,该项研究展示出微生物合成技术在光

超声波应用--提取生物纳米(超声波化学合成法)

超声波化学反应中,起关键作用的是声波的空化效应,在超声波的辐照过程中,在液体里将发生空化气泡的形成,长大和崩灭,当空化气泡崩灭时产生一个覆盖着的强压力脉冲,产生许多独特的性质,例如产生高达5000K的高温,大于200Mpa的压力,这就是超声波化学合成的能量来源,利用这些能量能在一些特殊粉末表面合成出

新型羟基磷灰石柔性生物纸问世

    本报讯 近日,中科院上海硅酸盐研究所研究员朱英杰带领的科研团队研制出具有良好柔韧性和优异力学性能的新型羟基磷灰石超长纳米线基生物纸。相关研究结果受到高度评价,作为外封面论文发表在《欧洲化学》,另一篇论文发表在《亚洲化学》并入选封面论文。  羟基磷灰石是脊椎动物骨骼和牙齿的主要无机成分,具有优

新合成法造出特种纳米材料

  俄罗斯国家研究型工艺技术大学NUST MISIS(莫斯科国立科技大学)的科学家利用“溶液燃烧”中的自蔓延高温合成法(SHS),研制出有特殊性能的纳米材料。这些材料可广泛应用于燃料、太阳能电池、新一代电容和蓄能装置及新型催化剂中。  亚历山大·穆卡思扬教授领导的团队将硝酸镍和甘氨酸混合物放到高孔隙

新合成法造出特种纳米材料

  俄罗斯国家研究型工艺技术大学NUST MISIS(莫斯科国立科技大学)的科学家利用“溶液燃烧”中的自蔓延高温合成法(SHS),研制出有特殊性能的纳米材料。这些材料可广泛应用于燃料、太阳能电池、新一代电容和蓄能装置及新型催化剂中。  亚历山大·穆卡思扬教授领导的团队将硝酸镍和甘氨酸混合物放到高孔隙

固态基底气溶胶生物合成宏观尺度功能纳米复合材料面世

  如何将纳米材料组装成宏观尺度体材料并保持其纳米尺度的独特性能,是纳米材料获得实际应用的关键,也是目前面临的重要挑战之一。将纳米材料组装成宏观尺度体材料可实现许多新的且单个纳米颗粒所不具备的性质,如光学、磁学、电学及离子传导性能等。  近日,中国科学技术大学教授俞书宏领导的研究团队发展了一种通用的

微生物合成Te纳米晶及其非线性光学应用方面取得进展

  近期,中国科学院上海光学精密机械研究所微纳光电子功能材料实验室研究员王俊团队、激光与红外材料实验室研究员张龙团队等与国内外机构合作,揭示了微生物合成Te纳米材料及其共轭聚合物复合材料优异的超快非线性光学特性,证实了其在超短脉冲产生、全光开关等领域的重要应用潜力,该项研究展示出微生物合成技术在光子

“纳米像素”加入“电子纸” 报业会否迎来第二春?

反射模式下的柔性“纳米像素”显示器基板  由英国牛津大学科学家率领的一个研究小组日前借助相变材料开发出一种柔性超高分辨率显示器,让单个像素点只有几百纳米的“纳米像素”显示器成为了现实。这种显示器除了具备极高的分辨率外,还具有超低能耗、可折叠、静态显示的优势,未来有望在智能眼镜、智能车窗和电子出版等领

木材衍生的纳米纤维素纸半导体制成

  日本研究人员开发出一种纳米纤维素纸半导体,其展现了3D结构的纳米—微米—宏观跨尺度可设计性以及电性能的广泛可调性。研究结果日前发表在美国化学学会核心期刊《ACS纳米》上。  具有3D网络结构的半导体纳米材料拥有高表面积和大量孔隙,使其非常适合涉及吸附、分离和传感的应用。然而,同时控制电气特性、创

叶绿素的生物合成

  叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入Mg 离子,形成Mg-原卟啉,之后形成原叶绿素酯,再还原生成叶绿素酯。[1][2]  叶绿素

脂肪的生物合成

脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合

叶绿素的生物合成

  通过同位素标记实验、酶学研究和突变体分析,目前已经对叶绿素生物合成的途径有了详细的了解。  叶绿素和血红素的生物合成前体是ALA(氨基乙酰丙酸),两分子由谷氨酸合成的δ氨基乙酰丙酸(ALA)反应生成胆色素原(PBG)。4个PBG 分子形成原卟啉IX 的环状结构,叶绿素合成的第一步是由镁螯合酶插入

新型纸基生物电池由细菌供电

  电池出现已有100多年,但时至今日,在某些偏远或资源有限的地区,这种我们惯用的日常用品却还属于奢侈品。而即将在美国化学学会第256届全国会议暨博览会上公布的一项最新成果——一种靠细菌发电的新型纸基生物电池,或许能改变这一状况,给这些地区带来低成本的新型能源。  这种新型电池是由美国纽约州立大学的