Antpedia LOGO WIKI资讯

单层二硫化钼低功耗柔性集成电路研究

柔性电子是新兴技术,在信息、能源、生物医疗等领域具有广阔的应用前景。其中,柔性集成电路可用于便携式、可穿戴、可植入式的电子产品中,对器件的低功耗提出了极高的技术需求。相对于传统半导体材料,单层二硫化钼二维半导体具有原子级厚度、合适的带隙且兼具刚性(面内)和柔性(面外),是备受瞩目的柔性集成电路沟道材料。然而,推动二维半导体柔性集成电路走向实际应用并形成竞争力,降低器件功耗、同时保持器件性能是关键技术挑战之一。 中国科学院物理研究所/北京凝聚态物理国家研究中心研究员张广宇课题组器件研究方向近年来聚焦于二维半导体,在高质量二维半导体晶圆制备、柔性薄膜晶体管器件和集成电路等方向取得了重要进展。近年来的代表性工作包括实现百微米以上大晶畴及高定向的单层二硫化钼4英寸晶圆,进而利用逐层外延实现了层数控制的多层二硫化钼4英寸晶圆;率先实现单层二硫化钼柔性晶体管和逻辑门电路的大面积集成;展示单层二硫化钼柔性环振电路的人工视网膜应用,模拟人......阅读全文

电子级二维半导体与柔性电子器件研究新进展

  在半导体器件不断小型化和柔性化的趋势下,以二硫化钼(MoS2)等过渡金属硫属化合物(TMDC)为代表的二维半导体材料显示出独特优势,具有超薄厚度(单原子层或少原子层)和优异的电学、光学、机械性能及多自由度可调控性,使其在未来更轻、更薄、更快、更灵敏的电子学器件中具有优势。然而,现阶段以器件应用为

单层二硫化钼低功耗柔性集成电路研究

  柔性电子是新兴技术,在信息、能源、生物医疗等领域具有广阔的应用前景。其中,柔性集成电路可用于便携式、可穿戴、可植入式的电子产品中,对器件的低功耗提出了极高的技术需求。相对于传统半导体材料,单层二硫化钼二维半导体具有原子级厚度、合适的带隙且兼具刚性(面内)和柔性(面外),是备受瞩目的柔性集成电路沟

研究发展出单层二硫化钼低功耗柔性集成电路

  柔性电子是新兴技术,在信息、能源、生物医疗等领域具有广阔的应用前景。其中,柔性集成电路可用于便携式、可穿戴、可植入式的电子产品中,对器件的低功耗提出了极高的技术需求。相对于传统半导体材料,单层二硫化钼二维半导体具有原子级厚度、合适的带隙且兼具刚性(面内)和柔性(面外),是备受瞩目的柔性集成电路沟

科学家研制出新型量子晶体管

  记者日前从中科大获悉:该校郭国平教授研究组与日本科学家合作,首次在半导体柔性二维材料体系中实现了全电学调控的量子点器件。这种新型半导体量子晶体管为制备柔性量子芯片提供了新途径。最新一期国际权威学术期刊《科学·进展》发表了该成果。  经过几十年发展,半导体门控量子点作为一种量子晶体管,已成为制备量

科学家在单原子层材料中首次观测到压电电子学效应

  美国佐治亚理工学院和中国科学院北京纳米能源与系统研究所王中林院士领导的研究小组最近与美国哥伦比亚大学的James Hone研究组合作,首次在二维单原子层材料二硫化钼中实验观测到压电效应(piezoelectric effect)和压电电子学效应(piezotronic effect),并首次成功

关于锂电池二硫化钼的发展的介绍

  尽管石墨烯有着许多令人眼花缭乱的优点,但它也有缺点,尤其是不能充当半导体——这是微电子的基石。化学家和材料学家正在努力越过石墨烯,寻找其他的材料。他们正在合成其他两种兼具柔韧性和透明度,而且拥有石墨烯无法企及的电子特性的二维片状材料,二硫化钼就是其中一种。  二硫化钼于2008年合成,是叫作过渡

物理所实现多层MoS2外延晶圆推动二维半导体的器件应用

  以二硫化钼为代表的二维半导体材料,因其极限的物理厚度、极佳的柔性/透明性,是解决当前晶体管微缩瓶颈及构筑速度更快、功耗更低、柔性透明等新型半导体芯片的一类新材料。近年来,国际上已在单层二硫化钼的晶圆制备及大面积器件构筑方面不断突破,在晶圆质量和器件性能方面逐渐逼近极限。例如,中国科学院物理研究所

美研究发现添加人造边缘可让二硫化钼原子层整齐生长

  据物理学家组织网近日报道,美国莱斯大学和橡树岭国家实验室(ORNL)的科学家合作开发出一种新方法,可以控制二硫化钼(MDS)原子层整齐一致地生长,借此朝制造二维电子设备前进了一步。相关研究发表在本周出版的《自然·材料学》杂志上。   半导体二硫化钼是制造功能性二维电子元件所需的三种材料中的一种

美国科学家研制出全球最纤薄发电机兼力学感知设备

  美国科学家在近日出版的《自然》杂志在线版报告称,他们首次在一块单个原子厚度的二硫化钼(MoS2)内观察到了压电效应,证实了此前的理论预测,并研制出全球最纤薄的发电机兼力学感知设备,其不仅非常透明轻质且可弯曲可拉伸。  压电效应指的是拉伸或按压一种材料会导致其产生电压,或者反过来,施加电压会导致物

超越石墨烯:二硫化钼和黑鳞成材料学家新宠

  单层石墨烯(上)激发了科学家探索半导体单晶材料——如二维黑磷单晶(中)和二硫化钼(下)——的热情。  通常情况下,胶带不会被看作是一种具有科学突破性的进展。但是当英国曼彻斯特大学物理学家安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)(两人在

单层二维材料可批量制造超薄晶体管

  一种叫做二硫化钼的二维新材料可以在硅衬底上长出单层薄膜,为柔性电子器件的生产开辟了条新路。  用仅有几个原子那么厚的薄膜做出微型、柔性的电路,一直是研究人员的梦想。然而,把这类二维薄膜生长到需要的规模,并生产出成批可靠的电子设备一直是个难题。  现在,材料科学家们已经找出一种方法,可以在直径10

半导体所在柔性电子学研究中取得系列成果

  近年来,基于柔性衬底的柔性电子学受到了全球范围越来越广泛的关注,其在柔性显示、电子皮肤、传感器、可再生能源等诸多领域都有着潜在的应用前景。而低维无机半导体纳米材料的特殊形貌、优异的电学/光学性能、良好的机械柔韧性等特点,使其成为了柔性电子学领域的一类非常优异的材料体系。  近年来,在国家自然科学

物理所超灵敏二硫化钼湿度传感器研究获进展

  二维材料由于其超高的表体比、优异的电学性能、柔性透明等特性在湿度传感器领域显示了巨大的应用前景。这其中以二硫化钼为代表的过渡金属硫属化物由于其优异的电流开关比、迁移率等特性为其在电子学器件中的应用提供了可能。由于二硫化钼本身是一种n型半导体,因此当其表面吸附水分子时,相当于对其进行了p型掺杂,其

透明柔性微型超级电容器

电子产品正朝着柔性化、透明化、轻薄化的趋势发展。研究高性能柔性透明电极材料与透明超级电容器对柔性电子产品的透明化具有重要的意义。最近,东华大学的王宏志课题组侯成义博士等人基于二硫化钼纳米材料开发了全透明柔性微芯片超级电容器。二硫化钼是一种过渡金属硫化物纳米材料,具有多样的晶格排布方式(1T, 2H,

半导体技术新突破:轻薄体软易传导

将二硫化钼作为 2D 半导体材料有一项非常优异的性能,那就是它们很容易弯曲。电子在这样的半导体中可以快速移动。同时,因为只有大约一个原子的厚度,这类半导体是透明的。这些特点让它们成为制作柔性 OLED 显示屏的理想材料。然而,当生产商试图将二硫化钼加工到控制 OLED 像素的晶体

美国科学家发现光激发下单层二硫化钼导电能力下降

  美国麻省理工学院和哈佛大学的研究人员发现,单层二硫化钼半导体在光激发下导电能力下降。利用这一新的光电导机制有望研制下一代激子设备。该发现发表在近日的《物理评论快报》上。  众所周知,电脑芯片及太阳能电池中使用的硅半导体在光的照射下,其导电能力增强。麻省理工学院和哈佛大学的研究人员发现,在强烈的激

英国牛津仪器公司开发二硫化钼生长工艺

  据报道,英国牛津仪器公司利用其纳米实验室纳米级生长系统,启动了二硫化钼生长工艺研究。  单层硫化钼是一种直接带隙半导体材料,在光电领域具有广泛的应用,如发光二级光、光伏电池、光探测器、生物传感器等,而多层二硫化钼是一种非直接带隙半导体,有望用于未来的数字电子技术。  牛津仪器公司表示,该公司已经

美国发现新型二维半导体材料

  近日,美国犹他大学发现一种新型二维半导体材料一氧化锡。据了解,该材料可用于制备计算机处理器和图形处理器等电子设备内的晶体管,有助于研制出运行速度更快、更加节约能源的智能手机和计算机等电子设备。  当前,电子设备内晶体管的玻璃基板由许多层三维材料构成,如硅材料。其弊端在于当电子通过时,会在所有层内

拉伸二硫化钼晶体造出能隙可变半导体

   这张放大1万倍的图片显示,一个电子器件上雕刻出了高低不平的“山峰”和“山谷”,铺在上面的二硫化钼经过拉伸后,形成了一种拥有可变能隙的人工晶体。  近日,美国斯坦福大学一科研团队首次通过拉伸二硫化钼的晶体点阵,“扯”出能隙可以变化的半导体。利用这种半导体,科学家有望制造出能够吸收更多光能的太阳能

新技术:原子级晶体管在柔性材料上的实现

  多年来,超薄、灵活的计算机电路一直是个工程目标,但技术障碍阻碍了实现高性能所需的设备小型化程度。现在,美国斯坦福大学的研究人员发明了一种制造技术,可在柔性材料上生产出长度不到100纳米的原子级薄晶体管。17日发表在《自然·电子学》上的一篇论文详细介绍了这项技术。  研究人员表示,随着技术的进步,

半导体所二维半导体磁性掺杂研究取得进展

  近年来,二维范德华材料如石墨烯、二硫化钼等由于其独特的结构、物理特性和光电性能而被广泛研究。在二维材料的研究领域中,磁性二维材料具有更丰富的物理图像,并在未来的自旋电子学中有重要的潜在应用,越来越受到人们的关注。掺杂是实现二维半导体能带工程的重要手段,如果在二维半导体材料中掺杂磁性原子,则这些材

我国利用压电材料实现对MoS2场效应晶体管动、静态调控

  自2004年Geim等人第一次在实验室得到单层石墨烯以来,二维材料的出现为传感器领域的进一步发展提供了可能,相对于传统的三维材料,二维材料的层状结构决定了其器件厚度可以达到单原子层,为实现更轻、更薄、体积更小的电子器件提供了可能。相较于其他二维材料,以单层二硫化钼 (MoS2) 为代表的二维半导

物理所研究团队发展出新的二维材料图案化的方法

  二维材料具有原子级厚度和较高的比表面积,所有原子处于表面,导致其表面对表面吸附和外界环境较为敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望成为下一代小型化电子器件的核心材料。为实现此类应用,需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法刻蚀或化学溶液湿

石墨烯后又一轮超级材料创新高潮袭来

         多个类型的平面材料堆砌在一起,可能展现每个的最佳性能。图片来源:H. Terrones et al  物理学家习惯使用他们所能想到的最好的词语来形容石墨烯。这丝薄的单原子厚度的碳是灵活、透明的,比钢强、比铜导电好,虽然非常薄,但它实际上是二维材料。在2004年被分离出来后不久,石墨

超强感应柔性电子皮肤问世

一款可同时感应压力和摩擦力的柔性电子皮肤。图片来源:百度图片 近日,电子科技大学副教授宋远强、教授张怀武和哈尔滨工业大学教授解维华研究小组联合研发出一款可同时感应压力和摩擦力的柔性电子皮肤。研究者通过制备特殊的石墨烯包裹氯化钠粉体作为致孔剂辅助自组装过程制备出超强感应电子皮肤。

二硫化钼摩擦离子电子学晶体管研究获进展

  两种不同材料接触分离可产生静电荷并引发一个摩擦静电场,该摩擦电场可以驱动自由电子在外部负载流通,得到脉冲输出信号。一方面,摩擦纳米发电机 (TENG) 就是利用了这种脉冲信号实现了将外部环境机械能转换成电能,近期在许多领域实现了许多突破性进展,包括从多种机械运动获取能源、自驱动机械感应系统、高灵

摩尔定律难以为继?新型二维材料有话说

近年来,半导体行业总是笼罩在摩尔定律难以为继的阴霾之下。但北京大学物理学院研究员吕劲团队与杨金波、方哲宇团队最新研究表明,新型二维材料或将续写摩尔定律对晶体管的预言。他们在预测出“具有蜂窝状原子排布的碳原子掺杂氮化硼(BNC)杂化材料是一种全新二维材料”后,这次发表在《纳米通讯》上的研究,通过

研究者开发出石墨烯的“竞争者”——二硫化钼

  宾夕法尼亚大学的研究人员研究出了可控的、导电能力能被开启和关闭的、能够自发光的硅的替代品——二硫化钼。  石墨烯,一种单原子厚度的碳原子晶格材料,由于其极高的导电性和无与伦比的薄而经常被吹捧作为硅的替代品用在电子器件领域。但石墨烯并不是唯一能够扮演这样角色的二维材料。  宾夕

上海技物所在二维半导体光电探测研究中取得进展

  中国科学院上海技术物理研究所红外物理国家重点实验室胡伟达、王建禄等研究人员在利用铁电聚合物极化对二维半导体带隙调控及其高性能光电探测方面取得新进展。相关成果发表在Advanced Materials(Advanced Materials 27, 6575–6581 (2015),DOI: 10.

半导体所HgTe二维电子气边缘态输运全电控制研究获进展

  普通的半导体材料二维电子气的霍尔沟道在外磁场下会展现整数量子霍尔效应。其物理起源是洛伦兹力导致沟道边缘附近出现具有金属特性的边缘态。反转能带的半导体材料HgTe二维电子气霍尔沟道甚至无外磁场时其边缘也会呈现出金属态特性,即量子自旋霍尔效应。这项工作被评为2007年度十大科学进展之一