中科院动物研究所发布二维液相质谱联用系统采购公告

中国科学院动物研究所昆虫代谢调控机制研究项目(二期)(区域中心)(生科院)发布二维液相-质谱联用系统采购项目公告,该项目预算金额108万元。 采购项目的潜在供应商应在北京市海淀区西直门北大街甲43号金运大厦B座1103室(西直门文慧桥西南角)获取采购文件,并于2023年07月11日 09点00分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:HSZT2023HC/059 项目名称:中国科学院动物研究所昆虫代谢调控机制研究项目(二期)(区域中心)(生科院)-二维液相-质谱联用系统采购项目 采购方式:竞争性磋商 预算金额:108.0000000 万元(人民币) 采购需求: 遴选1家供应商为采购人提供如下货物采购 本项目可以采购进口产品,但不限制符合需要的国内产品参与竞争。具体内容及要求详见竞争性磋商文件第三部分“采购内容及要求”。 合同履行期限:合同生效后3个月内 本项目( ......阅读全文

液相色谱-质谱联用实验

实验方法原理质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。质谱分析法主要是通过对样品的离子的质荷比的分析而实现

液相色谱-质谱联用实验

实验方法原理 质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。质谱分析法主要是通过对样品的离子的质荷比的分析而实

液相色谱质谱联用仪

LC-MS联用仪主要由高效液相色谱,接口装置(同时也是电离源),质谱仪组成。高效液相色谱与一般的液相色谱相同,其作用是将混合物样品分离后进入质谱仪。此处从略。仅介绍接口装置和质谱仪部分。  LC-MS接口装置   LC-MS联用的关键是LC和MS之间的接口装置。接口装置的主要作用是去除溶剂并使样

PE-Sciex-液相色谱/质谱/质谱联用仪

   仪器名称:PE Sciex 液相色谱/质谱   /质谱联用仪   仪器型号:API 3000   主要技术指标:    质量范围:5-3000amu多电荷的物质,   可检测的分子量范围达几万Da。    灵敏度:pmol   基本功能:   (1)质谱仪配有电喷雾源(ES

PE-Sciex-液相色谱/质谱/质谱联用仪

   仪器名称:PE Sciex 液相色谱/质谱   /质谱联用仪   仪器型号:API 3000   主要技术指标:    质量范围:5-3000amu多电荷的物质,   可检测的分子量范围达几万Da。    灵敏度:pmol   基本功能:   (1)质谱仪配有电喷雾源(ESI)

液相色谱质谱联用的用途

液相色谱质谱联用的在线组合将色谱仪的分离能力与质谱仪的定性能力相结合,可对复杂混合物进行更准确的定量和定性分析。它还简化了样品的预处理,使样品分析更容易。色谱 - 质谱法由气相色谱 - 质谱(GC-MS)和液相色谱 - 质谱(LC-MS)组成。 LC / MS和GC-MS相互补充以分析不同性质的化合

液相色谱质谱联用分类方法

液相色谱质谱联用仪类型有多种。1、按分析目的可分:实验室液相色谱质谱联用仪和工业液相色谱质谱联用仪。2、按分析规模可分:小型液相色谱质谱联用仪和大型液相色谱质谱联用仪。3、按质量分析器的时空属性可分:时间型液相色谱质谱联用仪和空间液相色谱质谱联用仪。4、按分辨率可分:低分辨液相色谱质谱联用仪、中分辨

液相色谱质谱联用仪类型

液相色谱质谱联用仪类型有多种。1、按分析目的可分:实验室液相色谱质谱联用仪和工业液相色谱质谱联用仪。2、按分析规模可分:小型液相色谱质谱联用仪和大型液相色谱质谱联用仪。3、按质量分析器的时空属性可分:时间型液相色谱质谱联用仪和空间液相色谱质谱联用仪。4、按分辨率可分:低分辨液相色谱质谱联用仪、中分辨

液相色谱质谱联用仪概述

  液相色谱-质谱联用仪介绍  液相色谱-质谱联用仪是液相色谱与质谱联用的仪器。它结合了液相色谱仪有效分离热不稳性及高沸点化合物的分离能力与质谱仪很强的组分鉴定能力。是一种分离分析复杂有机混合物的有效手段。联机的关键是适用接口的开发,必须在试样组分进入离子源前去除溶剂,目前,多采用履带式加热传送带。

液相色谱质谱联用仪组成

液相色谱-质谱联用技术经历了一个较长的实践、研究过程,直到20世纪90年代才出现了被广泛接受的商品接口及成套仪器。    液相色谱-质谱联用仪主要由色谱仪、接口、质谱仪、电子系统、记录系统和计算机系统六大部分组成。混合样品注入色谱仪后,经色谱柱得到分离。从色谱仪流出的被分离组分依次通过接口进入质

液相色谱质谱联用仪包括串联质谱吗

液相色谱质谱联用仪(LC-MS)通常包括液相色谱(LC)和质谱(MS)两部分组成。在LC部分,目标化合物被分离并分解成小分子物质,然后进入MS部分,产生一系列离子化质谱片段,揭示样品的结构信息。联用LC-MS可以为复杂混合物的分析提供更高的分辨率和灵敏度。因此,联用质谱仪是一种非常强大的分析仪器,能

液相色谱质谱联用仪的优点

随着杂交技术的成熟,lc-ms越来越显示出优越的性能。它除了可以弥补GC-MS的不足之外,还具有以下几方面的优点:主要结果如下:(1)MS具有广泛的适应性检测器,能够检测出几乎所有的化合物,很容易解决热不稳定化合物的分析问题。(2)分离能力强,即使在液相色谱上没有完全分离开,但通过MS的特征离子质量

液相色谱质谱联用技术的接口

由于液相洗脱剂的流量较气相色谱的载气要大得多,因而液相色谱和质谱联机关键装置是“接口”。其作用如下:①将洗脱剂及样品分子汽化;②分离去大量的洗脱剂分子;③完成对样品分子的电离;④在样品分子已电离的情况下,最好能进行碰撞诱导断裂(CID)。    近30年来,发展了许多接口技术,如传送带接口,粒子束接

液相色谱质谱联用仪的优点

随着联用技术的日趋成熟,LC-MS日益显现出优越的性能。它除了可以弥补GC-MS的不足之外,还具有以下几方面的优点:(1)广适性检测器,MS几乎可以检测所有的化合物,比较容易地解决了分析热不稳定化合物的难题;(2)分离能力强,即使在色谱上没有完全分离开,但通过MS的特征离子质量色谱图也能分别画出它们

液相色谱质谱联用仪的组成

  高效液相色谱一质谱联用仪(HPLC-MS)通常由液相色谱系统、进样接口、离子源、质量分析器、检测器、计算机控制及数据处理系统、真空系统等构成。  过程:混合样品通过液相色谱系统进样,由色谱柱分离,从色谱仪流出的被分离组分依次通过接口进入MS仪的离子源处被离子化,然后离子被聚焦于质量分析器中,根据

液相质谱联用仪对流动相的要求

1、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。2、流动相与样品不产生化学反应。3、流动相的黏度要尽量小,以便得到好的分离效果;降低柱压降,延长泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。4、流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最

液相质谱联用仪对流动相的要求

1、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。2、流动相与样品不产生化学反应。3、流动相的黏度要尽量小,以便得到好的分离效果;降低柱压降,延长泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。4、流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最

液相质谱联用仪对流动相的要求

1、流动相对样品具有一定的溶解能力,保证样品组分不会沉淀在柱中(或长时间保留在柱中)。2、流动相与样品不产生化学反应。3、流动相的黏度要尽量小,以便得到好的分离效果;降低柱压降,延长泵的使用寿命(可运用提高温度的方法降低流动相的黏度)。4、流动相的物化性质要与使用的检测器相适应。如使用UV检测器,最

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

液相色谱质谱联用系统的其他应用

在生物、医药、农业、化学、精细化工等方面均可应用:1.蛋白质和多肽的研究(蛋白的分子量测定及序列分析,肽谱测定,巯基及二硫键定位,蛋白质翻译后修饰分析-磷酸化、糖基化或化学修饰位点的确认等);2.寡核苷酸和核酸的分析;3.多糖的结构的研究;4.中药活性组份和其它天然产物的分析、鉴定;5.药物代谢产物

液相色谱与质谱联用注意事项

最关键的是液相色谱的流速要和质谱离子源的进样流速匹配,不同离子源用适用的离子化硫量是不一样的。

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被

高效液相质谱联用仪的工作原理

储液器中的流动相被高压泵打入检测系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内。由于样本溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的“吸附-解吸”的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样本浓度被