仿生人工跨膜信号转导研究获进展

近日,华东理工大学化学与分子工程学院、费林加诺贝尔奖科学家联合研究中心教授包春燕课题组利用折叠体的可控构象改变,设计合成了一种新型人工跨膜信号转导受体分子,该受体分子在插入磷脂膜后可通过加入不同信号分子,实现可逆的折叠和解折叠的跨膜构象改变,进而调控膜另一侧催化水解反应的开启和关闭,实现可控跨膜信号转导。相关成果以《全合成人工跨膜受体通过折叠/解折叠构象改变实现开关信号转导》为题发表于《美国化学会志》。 细胞膜上信号转导蛋白可以帮助细胞实现胞内外信号转导,实现调控细胞机体活动的目的,在细胞生长、增殖、代谢等众多生命过程中起着关键作用。与离子通道蛋白不同,信号转导蛋白并不直接传输信号分子,而是通过与胞外信号分子识别、发生跨膜构象变换、激活并引发胞内下游反应等系列过程完成信号跨膜转导。针对天然系统中信号转导受体蛋白构象复杂和存在丰度低的问题,人工信号转导体系的研究应运而生,它不仅有助于人们理解天然信号转导蛋白的工作机制,而且还......阅读全文

跨膜信号转导的方式

跨膜信号转导的方式主要有:1.通过具有特殊感受结构的通道蛋白完成的跨膜信号转导。这些通道蛋白可以分为电压门控通道、化学门控通道、机械门控同道三类,另外还有细胞间通道。2.由膜的特异性受体蛋白质、G-蛋白和膜的效应器酶组成的跨膜信号转导系统。3.由酪氨酸激酶受体完成的跨膜信号转导。

跨膜信号传导的概念

穿膜信号传送即跨膜信号传导,生物体内的各种细胞总是不断地接受这环境中各种理化因素的刺激,并根据这些刺激不断地调整着自身的功能状态以适应环境的改变。

穿膜信号转导的概念

中文名称穿膜信号转导英文名称transmembrane signal transduction定  义通过信号分子与其在细胞的各种膜上面的专一性受体结合,引起信号转导级联反应,产生生理响应,使细胞的生长、增殖、发育、分化与死亡得以协调进行的过程。应用学科生物化学与分子生物学(一级学科),信号转导(二

膜受体介导的信号转导

  与脂溶性的化学信号不同,亲水性信号分子(所有的肽类激素、神经递质和各种细胞因子等)均不能进入细胞。它们的受体位于细胞表面。这些受体与信号分子结合后,可以诱导细胞内发生一系列生物化学变化,从而使细胞的功能如生长、分化及细胞内化学物质的分布等发生改变,以适应微环境的变化和机体整体需要。这一过程可以称

穿膜信号转导的概念

中文名称穿膜信号转导英文名称transmembrane signal transduction定  义通过信号分子与其在细胞的各种膜上面的专一性受体结合,引起信号转导级联反应,产生生理响应,使细胞的生长、增殖、发育、分化与死亡得以协调进行的过程。应用学科生物化学与分子生物学(一级学科),信号转导(二

信号转导通常步骤

信号转导通常包括以下步骤:特定的细胞释放信息物质→信息物质经扩散或血循环到达靶细胞→与靶细胞的受体特异性结合→受体对信号进行转换并启动细胞内信使系统→靶细胞产生生物学效应【1】。通过这一系列的过程,生物体对外界刺激作出反应。

Science背靠背丨相分离如何促进膜受体信号转导

  相分离在膜受体及其下游信号转导通路中常有发生。以T细胞活化过程为例,TCR被Src家族激酶磷酸化后,招募胞内酪氨酸激酶ZAP70,后者磷酸化骨架蛋白上T细胞活化linker(LAT)的酪氨酸位点。磷酸化后的LAT可与接头蛋白Grb2的SH2/SH3结构域、GEF蛋白的脯氨酸富含域形成互作网络,发

信号转导途径的定义

在生物体中,细胞之间是相互联系的,相互作用的。机体产生的各种各样的信号分子,例如激素和细胞因子,在细胞膜上结合之后,就会与细胞膜上的受体结合,激活细胞内的一系列生化反应,使细胞能够产生一定的反应。从细胞膜到细胞内的这样的反应途径,就是信号传导途径。

核受体信号转导途径

细胞内受体分布于胞浆或核内,本质上都是配体调控的转录因子,均在核内启动信号转导并影响基因转录,统称核受体。核受体按其结构和功能分为类固醇激素受体家族和甲状腺素受体家族。类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态。配体与受体的结合使HSP与受体解离,暴露D

信号转导途径的定义

在生物体中,细胞之间是相互联系的,相互作用的。机体产生的各种各样的信号分子,例如激素和细胞因子,在细胞膜上结合之后,就会与细胞膜上的受体结合,激活细胞内的一系列生化反应,使细胞能够产生一定的反应。从细胞膜到细胞内的这样的反应途径,就是信号传导途径。

信号转导途径的定义

在生物体中,细胞之间是相互联系的,相互作用的。机体产生的各种各样的信号分子,例如激素和细胞因子,在细胞膜上结合之后,就会与细胞膜上的受体结合,激活细胞内的一系列生化反应,使细胞能够产生一定的反应。从细胞膜到细胞内的这样的反应途径,就是信号传导途径。

核受体信号转导途径

细胞内受体分布于胞浆或核内,本质上都是配体调控的转录因子,均在核内启动信号转导并影响基因转录,统称核受体。核受体按其结构和功能分为类固醇激素受体家族和甲状腺素受体家族。类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态。配体与受体的结合使HSP与受体解离,暴露D

Notch信号转导调节方式

Notch信号转导有三种调节方式:1.胞外水平,一种是通过与Notch的胞外段相互作用,从而影响正常的Notch受体与配体的结合,进而影响信号的传导,如:Fringe、Wingless,Scabrous等。另一种是通过在金属蛋白酶的作用下产生受体和配体的活性片段,影响正常Notch受体和配体的结合,

分叉信号转导途径的定义

中文名称分叉信号转导途径英文名称bifurcating signal transduction pathway定  义上游信号分子受到刺激后引发出不同的下游信号通路,产生不同的生理效应。如磷脂酶C被激活后产生两种第二信使:肌醇三磷酸和二酰甘油。前者导致钙离子释放;后者激活蛋白激酶C而引发相关效应。应

细胞信号转导的特点

细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转

什么是细胞跨膜信息传递

细胞的跨膜信号传递功能不论是单细胞生物或组成多细胞有机体的每一个细胞,在它们的生命过程中,都会不断受到来自外部环境的各种理化因素的影响。在多细胞动物,由于绝大多数细胞是生活在直接浸浴它们的细胞外液、即内环境之中,因此出现在内环境中的各种化学分子,是它们最常能感受到的外来刺激:这不仅是指存在于细胞外液

关于核受体信号转导途径介绍

  细胞内受体分布于胞浆或核内,本质上都是配体调控的转录因子,均在核内启动信号转导并影响基因转录,统称核受体。核受体按其结构和功能分为类固醇激素受体家族和甲状腺素受体家族。类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态。配体与受体的结合使HSP与受体解离,暴

细胞-分叉信号转导途径的定义

中文名称分叉信号转导途径英文名称bifurcating signal transduction pathway定  义上游信号分子受到刺激后引发出不同的下游信号通路,产生不同的生理效应。如磷脂酶C被激活后产生两种第二信使:肌醇三磷酸和二酰甘油。前者导致钙离子释放;后者激活蛋白激酶C而引发相关效应。应

关于细胞信号转导的介绍

  细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因

Ras2MAPK信号转导途径

Ras2MAPK信号转导途径Ras上游通路Ras能被复杂的网络激活.首先,被磷酸化激活的受体如PDGFR,EGFR直接结合生长因子受体结合蛋白(Grb2),这些受体也可以间接结合并磷酸化含有src同源区2(SH2)结构域的蛋白质(例如Shc,Syp)后,再激活Grb2.第二,Grb2的src同源区3

G蛋白介导的信号转导途径

G蛋白可与鸟嘌呤核苷酸可逆性结合。由γ亚基组成的异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白亚基的功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径 通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓

P38MAPK信号转导通路

P38MAPK 信号转导通路分裂原激活的蛋白 激酶(mitogen activated protein kinases,MAPK)家族是非常保守的丝氨酸/苏氨酸蛋白激酶,是信号转导过程中一组主要的信号分子,在发育和疾病发生过程中起重要作用。该家族有4个成员,即细胞外信号调节激酶(extracellu

G蛋白介导的信号转导途径

G蛋白可与鸟嘌呤核苷酸可逆性结合。由γ亚基组成的异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白亚基的功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径 通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓

生物膜跨膜运输的内吞作用介绍

  内吞作用又称入胞作用,是通过质膜的变形运动将细胞外物质转运入细胞内的过程。根据入胞物质的不同大小,以及入胞机制的不同可将内吞作用分为三种类型:吞噬作用、吞饮作用、受体介导的内吞作用。1、吞噬作用(phagaocytosis)是指摄入直径大于1μm的颗粒物质的过程。在摄入颗粒物质时,细胞部分变形,

细胞内受体的信号转导机理

  脂溶性化学信号(如类固醇激素、甲状腺素、前列腺素、维生素A及其衍生物和维生素D及其衍生物等)的受体位于细胞浆或细胞核内。激素进入细胞后,有些可与其胞核内的受体相结合形成激素-受体复合物,有些则先与其在胞浆内的受体结合,然后以激素-受体复合物的形式进入核内。  这些受体均属于转录因子,并具有锌指结

受体酪氨酸激酶的信号转导

  通过多种方式,细胞外配体结合通常会引起或稳定受体二聚化。这使得每个受体单体的细胞质部分中的酪氨酸被其伴侣受体反式磷酸化,从而通过质膜传播信号。 活化受体内特定酪氨酸残基的磷酸化为含有SH2结构域和磷酸酪氨酸结合(PTB)结构域的蛋白提供了结合位点。 含有这些结构域的蛋白质包括Src和磷脂酶Cγ。

简述细胞信号转导的几条通路

受体介导细胞信号通路包括: a.CAMP信号通路:由CM上的五种组分组成——激活型激素受体,Rs;与GDP结合的活化型调蛋白,Gs;腺苷酸环化酶,c;与GDP结合的抑制型调节蛋白,Gi;抑制型激素受体,Ri。激素配体+Rs→Rs构象改变暴露出与Gs结合位点→与Gs结合→Gs2变化排斥GDP结合GTP

PNAS:水稻油菜素内酯信号转导调控

在水稻中发现新的油菜素 《美国国家科学院院刊》(PNAS)日前发表中科院植物所关于水稻油菜素内酯信号转导调控的最新研究成果。该研究发现水稻油菜素内酯信号转导途径新的调节因子14-3-3蛋白,并揭示了一种新的OsBZR1蛋白活性调控机制,为油菜素内酯在水稻中的应用,提高水稻产量和增加植物抗逆性提示了

乙酰胆碱的信号转导相关介绍

  原生质体膨胀  红光可以刺激黄化小麦叶肉细胞原生质体体积膨胀,这种刺激作用可为随后的远红光照射所逆转,说明这一反应是在光敏素控制下进行的。红光对原生质体体积膨胀的刺激作用要求介质中含有Ca2+。乙酰胆碱可以代替红光在黑暗中引起原生质体的膨胀。与红光引起的反应不同,乙酰胆碱不仅可以在含Ca2+的介

简述细胞信号转导的几条通路

受体介导细胞信号通路包括: a.CAMP信号通路:由CM上的五种组分组成——激活型激素受体,Rs;与GDP结合的活化型调蛋白,Gs;腺苷酸环化酶,c;与GDP结合的抑制型调节蛋白,Gi;抑制型激素受体,Ri。激素配体+Rs→Rs构象改变暴露出与Gs结合位点→与Gs结合→Gs2变化排斥GDP结合GTP