日本大型核聚变实验装置开始运行

日本和欧盟共同建设、位于日本茨城县那珂市的大型核聚变实验装置 12 月 1 日开始运行,向实现“人造太阳”又迈进了一步。 核聚变是两个轻原子核结合成一个较重的原子核并释放出巨大能量的过程,核聚变理论上可以提供几近无限的能源。人类已经可以实现不受控制的核聚变,即氢弹的爆炸。而目前,科学家正在努力研究可控核聚变,核聚变可能成为未来的能量来源。 日本量子科学技术研究开发机构那珂研究所 1 日下午举行了大型核聚变实验装置 JT-60SA 开始运行的纪念仪式,这台六层楼高的机器位于东京北部那珂市的一个机库内,包括一个圆环形的“托卡马克”容器,旨在容纳加热至 2 亿摄氏度的旋转等离子体。随着中央控制室内的按钮被按下,数秒钟后装置内就产生了超高温等离子体。 量子科学技术研究开发机构的资料显示,JT-60SA 是目前世界上最大的超导托卡马克核聚变反应堆,10 月 23 日在试验运行时首次产生了核聚变必需的等离子体。 JT-60SA ......阅读全文

什么是核聚变?

核聚变,即轻原子核(例如氘和氚)结合成较重原子核(例如氦)时放出巨大能量。因为化学是在分子、原子层次上研究物质性质,组成,结构与变化规律的科学,而核聚变是发生在原子核层面上的,所以核聚变不属于化学变化。

伊朗开展核聚变研究

  伊朗近日宣布已经开展核聚变研究。该技术可用于氢弹制造,但科学家至今无法控制和利用聚变过程所产生的能量。   伊朗核聚变研究中心主任阿斯格哈・赛迪克扎德(Asghar Sediqzadeh)表示,初期的研究需要两年,而反应堆需要10年才能完工。   西方国家普遍担忧伊朗正开发核武器。联合国曾要

冷核聚变的概念

冷核聚变是指:在相对低温(甚至常温)下进行的核聚变反应,这种情况是针对自然界已知存在的热核聚变(恒星内部热核反应)而提出的一种概念性‘假设’,这种设想将极大的降低反应要求,只要能够在较低温度下让核外电子摆脱原子核的束缚,或者在较高温度下用高强度、高密度磁场阻挡中子或者让中子定向输出,就可以使用更普通

核聚变的类型介绍

电解水H2O生成H2,通过核裂变产生的高能辐射蒸汽压缩氢气(H2),这时的氢气成为离子状态,辐射蒸汽压缩H,两个H核核聚变生成一个He核,放出巨大的能量。一般在超高温和超高压封闭环境下进行。一个D(氘)和T(氚)发生聚变反应会产生一个中子,并且释放17.6MeV的能量(两个D(氘)发生聚变反应大约放

伊朗宣布启动核聚变研究

  据伊朗新闻电视台7月24日报道,伊朗原子能组织主席萨利希当天在首都德黑兰宣布启动伊朗核聚变研究。  报道称,萨利希是在伊朗原子能组织“国家核聚变项目”的启动仪式上宣布这一消息的。他说,尽管伊朗核聚变研究的商业化“需要20年到30年时间”,但是伊朗将倾全国之力,加快核聚变的研究进程。  

核聚变是终极能源吗?

   人类从未停止过对更高效更清洁能源的探索,其中核聚变能被认为是终极选择之一。为推进可控核聚变研究,各国联合推动了国际热核聚变实验堆(ITER)计划。  近日在科技部举办的中国加入ITER计划十周年纪念活动上,科学家就“核聚变是能源的美好未来吗”等话题进行了探讨。    仅在海水中就有超过45万亿

关于核聚变的类型介绍

  电解水H2O生成H2,通过核裂变产生的高能辐射蒸汽压缩氢气(H2),这时的氢气成为离子状态,辐射蒸汽压缩H,两个H核核聚变生成一个He核,放出巨大的能量。一般在超高温和超高压封闭环境下进行。  一个D(氘)和T(氚)发生聚变反应会产生一个中子,并且释放17.6MeV的能量(两个D(氘)发生聚变反

关于核聚变的方法介绍

  实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。要建立托卡马克型核聚变装置,需要几千亿美元。  另一种实现核聚变的方法是惯性约束法。惯性

简述核聚变的发生条件

  产生可控核聚变需要的条件非常苛刻。我们的太阳就是靠核聚变反应来给太阳系带来光和热,其中心温度达到1500万摄氏度,另外还有巨大的压力能使核聚变正常反应,而地球上没办法获得巨大的压力,只能通过提高温度来弥补,不过这样一来温度要到上亿度才行。核聚变如此高的温度没有一种固体物质能够承受,只能靠强大的磁

核聚变的反应条件介绍

  核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。  实现方式通常有三种方式来产生核聚变

概述核聚变的相关原理

  根据爱因斯坦质能方程E=mc2,原子核发生聚变时,有一部分质量转化为能量释放出来。  只要微量的质量就可以转化成很大的能量。  两个氢的原子核相碰,可以形成一个原子核并释放出能量,这就是聚变反应,在这种反应中所释放的能量称聚变能。聚变能是核能利用的又一重要途径。  最重要的聚变反应有:  式中D

核聚变的反应装置介绍

  可行性较大的可控核聚变反应装置是托卡马克装置。  托卡马克是一种利用磁约束来实现受控核聚变的环形容器。它的名字Tokamak 来源于环形(toroidal)、真空室(kamera)、磁(magnit)、线圈(kotushka)。最初是由位于苏联莫斯科的库尔恰托夫研究所的阿齐莫维齐等人在20世纪5

简述核聚变的控制方法

  1、太阳——引力约束聚变 地球上的万物靠着太阳源源不断的能量维持自身的发展。在太阳的中心,温度高达1500万摄氏度,气压达到3000多亿个大气压,在这样的高温高压条件下,氢原子核聚变成氦原子核,并放出大量能量。几十亿年来,太阳犹如一个巨大的核聚变反应装置,无休止地向外辐射着能量。太阳拥有极大质量

实现核聚变的方法介绍

实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。要建立托卡马克型核聚变装置,需要几千亿美元。另一种实现核聚变的方法是惯性约束法。惯性约束核聚

关于核聚变的优势介绍

  (1)核聚变释放的能量比核裂变更大  (2)无高端核废料,可不对环境构成大的污染  (3)燃料供应充足,地球上重氢有10万亿吨(每1升海水中含30毫克氘,而30毫克氘聚变产生的能量相当于300升汽油)  核聚变能利用的燃料是氘(D)和氚。氘在海水中大量存在。海水中大约每6500个氢原子中就有一个

欧盟启动“欧洲核聚变”新项目

  欧盟委员会日前宣布,欧盟成员国以及瑞士的聚变研究实验室共同启动一个名为“欧洲核聚变”的新项目,旨在推动聚变能技术研究。  2012年末,上述聚变研究实验室一致通过了2050年前聚变能发展路线图。研究人员希望,“欧洲核聚变”项目能解决路线图初始阶段的重要科学和技术挑战,重点之一就是为正在法国建造的

了解核聚变有了新工具

    温稠密物质(warm dense matter)是在宇宙星体、地幔内部、实验室核聚变内爆过程中广泛存在的一类物质。因此,在实验室生成温稠密物质,研究它们的特性对模拟惯性约束核聚变、超新星爆炸和某些行星内部结构、地幔的物质演化和成矿机理等具有重要指导意义。     温稠密物质范围很宽,可以定

关于核聚变的劣势有哪些?

  反应要求与技术要求极高。  从理论上看,用核聚变提供部分能源,是非常有益的。但人类还没有办法,对它们进行较好的利用。  (对于核裂变,由于原料铀的储量不多,政治干涉很大,放射性与危险性大,核裂变的优势无法完全利用。截至2006年,核能(核裂变能)发电占世界总电力约15%。说明了核裂变的应用的规模

几种主要的可控核聚变方式

太阳——引力约束聚变   地球上的万物靠着太阳源源不断的能量维持自身的发展。在太阳的中心,温度高达1500万摄氏度,气压达到3000多亿个大气压,在这样的高温高压条件下,氢原子核聚变成氦原子核,并放出大量能量。几十亿年来,太阳犹如一个巨大的核聚变反应装置,无休止地向外辐射着能量。太阳拥有极大质量,产

抓住机遇,中国氚科技需迎头赶上

  “随着民用核聚变能源技术的发展,现有的氚科技水平,已无法满足未来聚变堆开展大规模操作的应用需求,必须发展与之相适应的氚科学与技术。”  今年是国务院批准设立“国际热核聚变实验堆(ITER)计划专项”、全国人大常委会审议通过国际热核聚变实验堆计划及ITER组织正式成立三个重大事件十年的里程碑年。我

中国计划未来十年培养两千名核聚变研究人才

  记者3月17日从核聚变能发展研究人才工作会议上获悉,当前中国核聚变人才短缺,急需着手构建一个层次、布局学科合理的磁约束核聚变人才培养体系。用未来10年左右时间培养2000名从事核聚变科学与工程研究以及技术研发的各类人才,为中国核聚变能源可持续发展提供人才保障。   与此同时,在17日核聚变能发

科技部核聚变能发展研究人才工作会议在中国科大召开

  3月17日,由科技部主办的核聚变能发展研究人才工作会议在中国科学技术大学举行。科技部副部长曹健林、中科院副院长詹文龙、安徽省副省长倪发科、中国科大党委书记许武等出席会议并致辞。   许武在致辞中指出,长期以来,中国科大非常重视核聚变研究与人才培养,建校之初就设立了原子核物理与原子

关于核聚变的基本信息介绍

  核聚变(nuclear fusion),又称核融合、融合反应、聚变反应或热核反应。核是指由质量小的原子,主要是指氘,在一定条件下(如超高温和高压),只有在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦

日本开始组装核聚变发电实验装置

  日本原子能研究开发机构下属的那珂核聚变研究所28日宣布,已于当天开始组装核聚变发电实验装置“JT60SA”。该装置由日本与欧盟合作建设,预计2019年开始运转。   太阳发光发热依赖其内部无休止的核聚变反应,比如氢的同位素——氘、氚的原子核在超高温条件下相互聚合,生成更重的新原子核,同时释放出

陈贺能:激光核聚变曙光初现

位于美国加州的劳伦斯·利弗莫尔国家实验室。(资料图片)   新闻背景   日前有消息称,美国加利福尼亚州北部劳伦斯·利弗莫尔国家实验室的激光聚变装置——“国家点火装置”(NIF)在最近的一次试验中,核聚变反应产生的能量首次超过了燃料吸收的能量。这既是重要的科研进展,也预示人类向着获得“永久的清洁

美核聚变实验室主任辞职

  stewartprager从美国新泽西州普林斯顿等离子体物理实验室(pppl)辞职,该实验室9月26日在一份声明中表示。prager的离职紧随该实验室主要设备发生故障之后,它可能在一年内不能使用。故障还可能会给能源部4.38亿美元的聚变能科学(fes)计划带来麻烦,该计划负责资助pppl,而且已

日本核聚变研究取得新进展

   日本量子科学技术研究开发机构(QST)近日宣布,在其用于国际热核聚变实验堆(ITER)加热等离子体的100万伏加速器中产生了能够持续60秒的强电流密度粒子束。60秒是实验设备限定的运转时间,有望进一步实现ITER提出的3600秒的目标。此前的时间仅为0.4秒,这标志着长时间维持核聚变燃烧等离子

我国核聚变工程技术领跑全球

  核聚变能因其清洁、环保、安全、原料丰富等特点,被认为是人类未来最有希望的能源之一。由中国、美国、日本、俄罗斯、欧盟、韩国、印度七大经济体共同参与的国际大科学项目——国际热核聚变实验堆ITER计划,是目前世界最大的国际合作组织,ITER也是实现未来商业用聚变能的关键一步。日前,由中国科学院合肥研究

ITER核聚变堆进入关键阶段

  世界最大能源研究项目、投入200亿美元的ITER核聚变堆在2013年12月进入关键建造阶段,开始注入混凝土。在这座建筑中将放置一个巨大的环形装置。   ITER项目产生于1985年在美、俄日内瓦峰会上戈尔巴乔夫和里根达成的一个国际倡议,目的是和平发展聚变能。现在的成员有俄罗斯、美国、欧盟、日本

日开始组装核聚变发电实验装置

日本原子能研究开发机构下属的那珂核聚变研究所28日宣布,已于当天开始组装核聚变发电实验装置“JT60SA”。该装置由日本与欧盟合作建设,预计2019年开始运转。   太阳发光发热依赖其内部无休止的核聚变反应,比如氢的同位素――氘、氚的原子核在超高温条件下相互聚合,生成更重的新原