植物所揭示叶绿体蛋白转运马达新功能

叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,而外周蛋白和天线蛋白由核基因组编码。这些核基因组编码的叶绿体蛋白,在细胞质中合成,而后通过叶绿体被膜上的TOC-TIC蛋白转运装置运输至叶绿体,同叶绿体基因组编码的亚基组装形成超级复合体。目前,叶绿体蛋白转运装置和基因表达装置协同调控机制尚不清楚。中国科学院植物研究所迟伟研究组以叶绿体蛋白转运马达FtsHi1为切入点,对上述问题开展了研究。该研究利用亚细胞定位分析和cpChIP等实验手段,证明FtsHi1实际上是一个定位于叶绿体拟核的DNA/RNA结合蛋白。荧光标记实验表明,FtsHi1在体外具有DNA/RNA解旋酶活性,可有效解开DNA-DNA和DNA-RNA双链。研究发现,FtsHi1的DNA/RNA解旋酶活性与叶绿体内R-lo......阅读全文

液压马达的特点

 液压马达是液压系统的一种执行元件,它将液压泵提供的液体压力能转变为其输出轴的机械能(转矩和转速)。   液压马达亦称为油马达,主要应用于注塑机械、船舶、起扬机、工程机械、建筑机械、煤矿机械、矿山机械、冶金机械、船舶机械、石油化工、港口机械等。   从能量转换的观点来看,液压泵与液压马达

《细胞》:分子马达铸造记忆

科学家找到了将经历与认知联系起来的分子机制 大脑如何形成一次记忆?通常,我们的经历和相互作用会以某种方式在大脑中留下烙印,然而神经细胞究竟是如何改变它们的连接从而形成记忆,却一直是个未解之谜。如今,科学家表示,他们找到了将经历与认知联系起来的分子机制,而这一切似乎全部要归功于一台微小的分子发动机。

气动马达的相关选择

   气动马达目前在国内工业自动化领域凭着防爆、无极调速、使用随意性大,特别适应高温潮湿、易燃易爆等电机不适用场合等特性已被广泛应用。    气动马达的分类及选择    1.叶片式马达    在相同功率下,叶片式马达比活塞式马达体积更小,重量更轻、价格更低。    由于设计、制造简单,使其可

齿轮泵马达特点

  1 结构紧凑、体积小、重量轻  由铝合金制造前盖、中间体、后盖,合金钢制造的齿轮和铝合金制造的压力板等零部件组成,前、后盖内各压装两个DU轴承,DU材料是齿轮泵的理想轴承材料,可大大提高齿轮泵的寿命。  2.工作可靠  压力板是径向和轴向压力补偿的主要元件,可以减轻轴承载荷和自动调节齿轮泵轴向间

转运反应成分的制备实验——转运反应

试剂、试剂盒磷酸肌酸肌酸磷酸激酶ATPGTP仪器、耗材微量离心管实验步骤1. 将反应混合物加入一在冰上放置的微量离心管中。能量重建系统成分如下:5 mmol/L 磷酸肌酸20 单位/ml 肌酸磷酸激酶0.5 mmol/L ATP0.5 mmol/L GTP2. 滴一滴孵育混合物到一片位于带盖子的湿盒

钠钾转运体的转运过程

钠钾泵(也称钠钾转运体),为蛋白质分子,进行钠离子和钾离子之间的交换。每消耗一个ATP分子,逆电化学梯度泵出3个钠离子和泵入2个钾离子。保持膜内高钾,膜外高钠的不均匀离子分布。

液压马达性能下降的原因

  (1)液压马达磨损情况   WTZ-150和WTZ-200系列钻机上安装的主要是6K-195和 6K-310两种型号液压马达。经拆检后发现,液压马达配流盘与阀盘的摩擦表面磨损严重,磨损zui深处达0.15 mm;输出轴油封漏油 。   (2)配流盘磨损的原因   由该种液压马达工作原理可知

eLife剖析关键的马达蛋白

  有丝分裂纺锤体是细胞分裂过程中的核心分子机器,日前加州大学的科学家们,解析了该机器中一个关键组分的晶体结构。现在,人们可以在此基础上进行干涉,阻断癌症中不受控制的细胞分裂。   “驱动蛋白5有着出人意料的结构,这一结构为多种癌症的治疗提供了新的机遇,”领导这项研究的助理教授Jawdat A

如何维修伺服马达过热故障?

1,观查现阶段伺服马达的情况可否获得判断結果。伺服马达的机器设备假如长期持续运行,电机及驱动器控制模块的溫度就会来到一定的高度,影响分辨結果。这时,需要关机,10分钟后再次开展故障检测。2,在程序层面,要留意写法有哪些是不是恰当。并查验其中移动頻率和进给速率是不是一切正常。怎样减少伺服马达的溫度,可

参与细胞移动分子马达介绍

分子马达(Motorprotein)是一类蛋白质,它们的构象会随着与ATP和ADP的交替结合而改变, ATP水解的能量转化为机械能 ,引起马达形变,或者是它和与其结合的分子产生移动。就是说,分子马达本质上是一类ATP酶。例如肌肉中的肌球蛋白(Myosin)会拉动粗肌丝向中板移动,引起肌肉收缩。而另外

瑞典研究揭示葡萄糖转运蛋白转运过程

  瑞典国家生命科学实验室(SciLifeLab)研究团队成功构建了迄今为止最全面的葡萄糖转运蛋白(GLUT)转运周期,并确定了GLUT蛋白对脂质的敏感性,对于理解人类生理和代谢的基本机制具有重要意义。研究成果发表在《自然》(Nature)。  碳水化合物如葡萄糖和果糖为细胞提供了重要的能量来源。细

常用仪器操作规定——搅拌马达(二)

2. 根据实验所需,选择适当的转速,不要时快时慢。

常用仪器操作规定——搅拌马达(三)

3. 使用时,若发现马达发烫,应立即停止使用,马达转动时间不宜过长,一般5~6hr。

常用仪器操作规定——搅拌马达(四)

4. 马达应放在干燥的地方保存。

直流马达的车身电子应用(二)

考虑到VIPowerTM M0-7技术杰出的节省空间特质,意法半导体H-桥系列产品能将整个马达驱动架构建置到先进的小型电源封装里:SO-16N和PowerSSO-36。分别可以减少60 mm2和106 mm2的印记面积,厚度低于2.5 mm,让印刷电路板更小,系统也能降低重量。除此之外,VI

常用仪器操作规定——搅拌马达(一)

1. 使用马达调节转速时,开始用手帮助慢慢启动马达,当搅拌转动时,速度从小到大逐渐增大,决不能一下子转速就很大,以免损坏仪器。

马达扭力试验机的特点

马达扭力试验机特点 :1.机台采伺服马达驱动,行星减速机提供高精度之扭力测试。2.测试条件皆由电脑画面设定,并可储存。3.可直接测试每个角度之扭力值变化(扭力-角度曲线变化图)。4.同时显示扭力-角度曲线图及扭力衰减寿命曲线图。5.可储存及列印图形(扭力-角度曲线图及扭力衰减寿命曲线图、检验报表)。

美华裔学者发现新“分子马达”

  4月15日,美国肯塔基大学药学院教授郭培宣(Peixuan Guo)研究组公布了他们在“分子马达”领域的新成果。   分子马达是DNA、RNA分子在细胞内进行物理运动的重要机制。更重要的是,生物学家认为,这一理论指出了纳米药物的发展潜力。迄今为止,科学家已经发现了分子马达运动的两种形式,即“线

齿轮减速马达怎么安装维护?

  齿轮减速马达传动硬齿面减速机节省空间,可靠耐用,承受过载能力高,功率可达132KW;能耗低,性能优越,减速机效率高达95%以上;振动小,噪音低,节能高;R系列斜齿轮硬齿面减速机选用锻钢材料,钢性铸铁箱体,齿轮表面经过高频热处理;经过精密加工,确保轴平行度和定位轴承要求,形成斜齿轮传动总成的减速机

直流马达的车身电子应用(一)

摘要车内系统的电子产品含量持续成长,原因是市场对自动化、安全性、能耗优化和高质量体验的要求越来越高。在此背景之下,使用直流马达的应用数量也不断上扬。本文将分析车用直流马达的市场趋势,并说明何以从诊断功能、交换时间的优化、减轻重量和(最重要的一点)提升可靠度各方面来看,固态驱动器(SSD)都是比较好的

能做工的DNA-分子马达面世

一项7月20日发表于《自然》的研究中,物理学家用DNA链构建了一个分子级马达,并可通过“拧紧”DNA“弹簧”来储存能量。该技术为旨在寻找合成化学和药物递送等领域应用的“DNA折纸术”提供了新技巧。研究团队成员之一、德国慕尼黑工业大学的生物物理学家Hendrik Dietz指出,这不是第一个以DNA为

美国GAST气动马达独特优点

美国GAST气动马达独特优点:美国GAST气动马达坚固的结构和可靠而闻名於各行业,嘉仕达气动马达及气动齿轮马达有油润滑式或无油式型号。GAST气动马达2AM-NCC-16现货;从搅拌设备至泵的驱动,嘉仕达的气动马达和齿轮马达可被应用在很多不同的工业应用中。GAST气动马达意大利 OBER气动马达在华

微型调速马达的原理与特点

   微型减速电机是微型精密减速箱(也叫齿轮箱)与微型电动机组装成一体的一种电动机。    用户在选择电动机时,往往会因为单体电动机转速过高或扭力太小而不能满足其需要。    这时,选择微型减速电机是合适和直接的方案。    微型减速电机在日常生活中应用及其广泛,特别是日常用品中的小工具。

齿轮式液压马达的原理如何?

   下图为外啮合齿轮马达的工作原理图,P为两齿轮的啮合点,h为齿轮的齿高,啮合点到两齿轮齿根的距离分别为a和b,齿宽为B。    当压力油进入马达的高压腔时,处于高压腔的所有轮齿均受到压力油的作用,其中相互啮合的一对轮齿的齿面只有一部分受压力油的作用。    由于a和b均小于h,故在两个齿

胞吞转运的定义

中文名称胞吞转运英文名称transcytosis定  义上皮细胞将胞外大分子在一侧以受体介导胞吞作用摄入胞内,经内体分拣,小泡穿过细胞质转运,在另一侧将物质外排到胞外间隙的运输过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)

转运RNA的定义

大多数tRNA由七十几至九十几个核苷酸折叠形成的三叶草形短链组成,相对分子质量为25000〜30000,沉降常数约为4S。旧称联接RNA、可溶性RNA等。主要作用是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质,即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序。tRNA

转运RNA的定义

  大多数tRNA由七十几至九十几个核苷酸组成,参与蛋白质的合成。分子量为25000~30000,沉降常数约为4S(个别tRNA的沉降常数为3S,含63个核苷酸)。曾用名有联接RNA、可溶性RNA、pH5RNA等。一种tRNA只能携带一种氨基酸,如丙氨酸tRNA只携带丙氨酸,但一种氨基酸可被不止一种

胞吞转运的概念

中文名称胞吞转运英文名称transcytosis定  义上皮细胞将胞外大分子在一侧以受体介导胞吞作用摄入胞内,经内体分拣,小泡穿过细胞质转运,在另一侧将物质外排到胞外间隙的运输过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)

什么是胞吞转运?

中文名称胞吞转运英文名称transcytosis定  义上皮细胞将胞外大分子在一侧以受体介导胞吞作用摄入胞内,经内体分拣,小泡穿过细胞质转运,在另一侧将物质外排到胞外间隙的运输过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)

RNA转运的概念

中文名称RNA转运英文名称RNA transport定  义RNA分子从一个细胞区室或区域移动到另一个细胞区室或区域的过程。各类不同RNA(如信使RNA、核小RNA、核糖体RNA和转移RNA)的转运遵循不同的机制。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)