原子阱痕量分析:为单原子“计数”

从南极钻取的一块冰芯,是多少年前形成的?一处深层地下水又有多少年的历史?人们对于赖以生存的地球的历史充满好奇,科学家则一直在想办法提高定年的准确度。 定年精度随着科学家前赴后继的努力而被不断提高,但在动辄以百万年为计量单位的地球历史时间尺度上,一个微小偏差就可能产生数万年甚至数十万年的定年误差。 中国科学技术大学教授卢征天、蒋蔚与中国科学院地质与地球物理研究所研究员庞忠和等科研人员,在国家自然科学基金国家重大科研仪器研制项目“原子阱氪、氩同位素定年装置”的支持下,建立“原子阱痕量分析”的超灵敏同位素检测方法,利用量子精密测量技术攻克了氪-85、氩-39和氪-81的探测难题,建成了原子阱痕量分析大型科学仪器。 其灵敏度、检测效率、检测速度等各项指标都处于世界领先水平,为环境、地质、水文、气候和海洋物理学等领域提供了先进的检测手段,带来了新的科学前沿突破。 测量太难:同位素丰度极低 放射性同位素被称为自然界的天然时钟,......阅读全文

放射性同位素使用规则

RULES FOR THE USE OF RADIOACTIVITY You must be certified by EHS before you can use radioactivity.  The guiding principle isCOMMON SENSE.  I take radio

什么是放射性同位素

如果两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素,所以两者就叫同位素。有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,并不是所有同位素都具有放射性。放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位素的原子核很

放射性同位素的定义

元素的原子由原子核和电子构成,而原子核又由质子和中子组成。同种元素具有相同的质子数,但可以有不同的中子数,这种具有相同的质子数而具有不同的中子数的元素叫同位素。其中有一些同位素的原子核能自发地发射出粒子或射线,释放出一定的能量,同时质子数或中子数发生变化,从而转变成另一种元素的原子核。元素的这种特性

放射性同位素衰变定律

放射性同位素衰变不受任何外界条件的影响,并以其固有的速度进行。不同放射性同位素衰变速度不一,但最终都变成稳定同位素。放射性同位素衰变速率(dN/dt)与现有母体原子数(N)成正比。其表达式则为dN/dt∝N等式可写成:同位素地球化学式中:λ为衰变常数,代表单位时间内母体原子的衰变几率;“-”表示母体

原子吸收光谱法检测罐头食品中痕量锡

 用石墨炉原子吸收法测定锡时,由于锡易生成挥发性的化合物,以及氯化物等共存元素的气相干扰,导致直接测定的灵敏度较低,灰化阶段锡的损失比较严重。为了减少锡在石墨炉中的挥发损失,目前常用的方法是加入以硝酸盐为代表的基体改进剂。但有的改进剂会引起较大的背景吸收或增加空白值。  一种有效的分离及富集手段:电

痕量元素分析系统

  痕量元素分析系统是一种用于农学、水利工程领域的分析仪器,于2018年9月8日启用  技术指标  (1)质量分辨率:在一次分析中分辨率0.3amu~3.0amu连续可调。多元素分析不同元素可以设置不同的分辨率。 (2)线性动态范围: 系统的线性动态范围至少9个数量级,数据偏离线性不超过5%。 (3

痕量分析介绍

  (trace analysis),物质中含量在百万分之一以下的组合的分析方法。痕量一词的含义随着痕量分析技术的发展而有所变化。痕量分析包括测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况。一般分成3 个基本步骤:取样、样品预处理和测定。由于被测元素在样品中含量很

质谱仪器的用法

  分离和检测不同同位素的仪器。质谱仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法zui早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。现代

实验室分析方法无机质谱法

无机质谱分析法成为现代科学技术发展不可替代的分析工具是从测量元素存在开始,并伴随物质成分分析技术发展逐渐完善。20世纪50代后期,由于火花源质谱的发展,无机质谱法在微量、痕量元素分析领域几乎与原子吸收光谱、中子活化分析占有同样的地位。20世纪70~80年代,激光电离质谱法、四极杆电感耦合等离子体质谱

放射性同位素的应用同位素示踪法(三)

(二)正式实验阶段 1.选择放射性同位素的剂量   同位素必须能经得起稀释,使其最后样品的放射性不能低于本底,一般来说放射性同位素在生物体内不是完全均匀地被稀释,可能在某些器官、组织、细胞、某些分子中有选择性地蓄积,蓄积的部分放射性就会很强,在这种情况下,应以相关部位对示踪剂的蓄积率来考虑示踪剂用量

放射性同位素的应用同位素示踪法(二)

二、示踪实验的设计原则   设计一个放射性同位素的示踪实验应从实验的目的性,实验所具备的条件和对放射性的防护水平三方面着手考虑。原则上必须从两个主要方面来设计放射性示踪实验:一是必须寻求有效的、可重复的测定放射性强度的条件,二是必须选择一个合适的比活度λqδ(单位是原子/时间/分子,dpm/mol或

放射性同位素的应用同位素示踪法(一)

放射性同位素的应用-同位素示踪法 同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie

2013年全国无机及同位素质谱学学术会议分会报告(一)

  2013年11月23日-25日,由中国质谱学会无机质谱、同位素质谱和仪器与教育业委员会联合承办,江苏天瑞仪器协办的2013年全国无机及同位素质谱学学术会议在江苏昆山隆重召开,来自全国高等学校,科研机构和企业的200余位从事质谱工作的专家学者参加了大会。除大会报告外,

质谱仪的基本原理及使用方法简介

  原理   质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。   质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受

放射性同位素的相关介绍

  元素的原子由原子核和电子构成,而原子核又由质子和中子组成。同种元素具有相同的质子数,但可以有不同的中子数,这种具有相同的质子数而具有不同的中子数的元素叫同位素。其中有一些同位素的原子核能自发地发射出粒子或射线,释放出一定的能量,同时质子数或中子数发生变化,从而转变成另一种元素的原子核。元素的这种

关于放射性同位素的放射性射线的主要应用

  (l)射线探测。将丫射线透过样品,若样品中有砂眼或裂痕,则射线在该处的吸收就减小,因此在样品后面放上照相底片,显影后的底片上将留下相应的痕迹。另外,射线通过物质时都按照一定的规律被物质吸收或散射,这样就可测量物体的密度及厚度等。在石油勘探方面,应用丫射线等可研究地层的性质,求出泥质含量,区分岩性

痕量气体预浓缩仪

  痕量气体预浓缩仪是一种用于地球科学领域的分析仪器,于2018年07月02日启用。  技术指标  痕量气体浓缩仪分析模块为isoprime100稳定同位素质谱仪的前端自动前处理装置,用于ppm级CH4、CO2以及ppb级N2O的同位素分析。其配备化学阱去除H2O和CO2(用于N2O和CH4分析),

蛋白激酶的生化活性检测方法—放射性同位素法

  使用放射性同位素方法有诸多优点:它是直接检测的方法,放射性同位素的灵敏度很高,测试结果非常准确,被认为是蛋白激酶生化活性检测的“金标准”。因此,至今还有很多人继续使用放射性同位素作为检测激酶活性的方法。放射性同位素方法主要有膜过滤法和接近闪烁计数法两类。  放射性同位素方法有以下一些缺点:  (

钨丝电热原子吸收光谱分析法测定痕量锌

      摘要:锌是人体必需的微量金属元素之一,但过度地摄入锌可能导致慢性中毒。目前测定锌的方法主要有火焰原子吸收光谱法(FAAS)、电感耦合等离子体发射光谱法(ICPOES)和电感耦合等离子体质谱法(ICPMS)等。      蒸馏水中的锌与吡咯烷二硫代氨基甲酸铵(APDC)形成的络合物

痕量分析方法中子活化分析法

  高纯半导体材料的主要分析方法之一。用同位素中子源和小型加速器产生的通量为1012厘米-2·秒-1以上的中子流辐射被测定样品。中子与样品中的元素发生核反应,生成放射性同位素及γ射线。例如Si+n→Si+γ。用探测器和多道脉冲高度分析器来分析同位素的放射性、半衰期及γ射线能谱,就能鉴定出样品中的痕量

各种类型质谱仪器的优缺点

  1913年J.J.Thomson制成第一台质谱仪,用其发现了20Ne,22Ne同位素。1919年第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获

痕量烃分析仪

  GS-101B浓缩型碳氢化合物分析仪是采用浓缩法离线分析液氧中的碳氢化合物各组分含量的专用色谱仪。工作可靠,在空分制氧中已获得广泛应用。  概述:  GS-101B型离线痕量烃色谱仪,是用来分析液氧、液态空气或吸风口空气中痕量碳氢化合物专用仪器,对难分离物质(C1~C4)分离度高,灵敏度高,可直

铅的痕量分析

  铅是一种对人体有害的蓄积性毒物。人们已经认识到,即使是低剂量的铅,由于能在人体中蓄积,也可不同程度地导致对人体特别是儿童的神经系统、造血系统、生长发育等方面出现症状不明显的慢性损害。因此, 痕量铅的危害愈来愈引起人们的关注, 其分析技术也不断得到发展,方法日益成熟。痕量铅的分析日益受到重视,传统

痕量分析基本步骤

痕量分析包括测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况。一般分成3 个基本步骤:取样、样品预处理和测定。由于被测元素在样品中含量很低、分布很不均匀,特别是环境样品,往往随时间、空间变化波动很大,要充分注意取样的代表性和保证一定的样品量。

砷的痕量分析

  砷的测定包括砷的各种形态的测定, 早期多用光度法测定,最常见的是银盐法和新银盐法。前者以AgDDC -CH3  -吡啶为吸收法;后者用NaBH4 将砷转换为砷氢化物,在硝酸-聚乙烯醇-乙醇体系中显色,根据不同砷氢化物所形成配合物吸收波长的差别测定含量。用一般光度法及联用技术测定, 如HPLC  

钒的痕量分析

  钒广泛分布于自然界中,在地壳中的总含量排在金属的第22位,约为0.02% — 0.03% 。钒主要存在于岩石矿物中,钢铁、淤泥、废水、食品甚至于人的头发中也含有微量钒。随着社会的不断发展,人们对钒的认识也越来越深入。首先,钒具有生物活性,是人体所必需的微量元素之一。但体内钒过量,则可刺激呼吸、消

GCMS是干什么的

GC-MS是指气相色谱-质谱联用仪,这是一种测量离子荷质比(电荷-质量比)的分析仪器。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元

GCMS是干什么的

GC-MS是指气相色谱-质谱联用仪,这是一种测量离子荷质比(电荷-质量比)的分析仪器。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元

什么是痕量

痕量分析 (trace analysis),物质中含量在百万分之一以下的组合的分析方法 。痕量一词的含义随着痕量分析技术的发展而有所变化。痕量分析包括测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况。一般分成3 个基本步骤:取样、样品预处理和测定。由于被测元素在样品

痕量具体是指多少

痕量分析 (trace analysis),物质中含量在百万分之一以下的组合的分析方法 。痕量一词的含义随着痕量分析技术的发展而有所变化。痕量分析包括测定痕量元素在试样中的总浓度,和用探针技术测定痕量元素在试样中或试样表面的分布状况。一般分成3 个基本步骤:取样、样品预处理和测定。由于被测元素在样品