大连化物所开发出柔性导热电绝缘复合相变材料膜

近日,中国科学院大连化学物理研究所研究员史全团队通过简单易行的合成方法,开发出一种具有高导热、电绝缘且热驱动形状记忆特性的柔性复合相变材料膜,在可穿戴电子器件热管理领域展现出应用前景。 相变材料在相变温度范围内能够吸收或释放大量潜热,可作为理想的储热控温介质应用于热量管理与温度控制领域。然而,相变材料固有的导热性低、固态刚性大、电绝缘性差等问题限制了其在柔性电子器件热管理方面的应用。 针对此问题,研究团队选用高导热与电绝缘性的氮化硼作为导热填料,将有机相变材料负载于多孔结构的聚偏氟乙烯-氮化硼薄膜中,构建了具有导热增强与电绝缘性的柔性复合相变膜。该柔性相变材料膜与纯相变材料相比,导热性能大幅提升至0.52W·m-1·K-1,并且经历1000次冷热循环后仍表现出稳定的相变性能。此外,该柔性相变材料膜还呈现出优异的电绝缘特性(1.89×105Ω·m)与热驱动-形状记忆功能,进一步增强了其在电子产品应用中的安全性和长期适用性,......阅读全文

大连化物所开发柔性导热电绝缘复合相变材料膜

  中国科学院大连化学物理研究所研究员史全团队通过简单易行的合成方法,开发出一种具有高导热、电绝缘且热驱动形状记忆特性的柔性复合相变材料膜,在可穿戴电子器件热管理领域具有应用前景。相关研究成果近日发表于《纳米能源》。  相变材料在相变温度范围内能够吸收或释放大量潜热,可作为理想的储热控温介质,应用于

大连化物所开发出柔性导热电绝缘复合相变材料膜

  近日,中国科学院大连化学物理研究所研究员史全团队通过简单易行的合成方法,开发出一种具有高导热、电绝缘且热驱动形状记忆特性的柔性复合相变材料膜,在可穿戴电子器件热管理领域展现出应用前景。  相变材料在相变温度范围内能够吸收或释放大量潜热,可作为理想的储热控温介质应用于热量管理与温度控制领域。然而,

我所开发出柔性导热电绝缘复合相变材料膜

原文地址:http://www.dicp.cas.cn/xwdt/kyjz/202401/t20240112_6953833.html  近日,我所氢能与先进材料研究部热化学研究组(DNL1903)史全研究员团队通过简单易行的合成方法,开发出一种具有高导热、电绝缘且热驱动形状记忆特性的柔性复合相变材

树脂树脂基复合材料的导热测试方法

树脂基复合材料是由以有机聚合物为基体的纤维增强材料,通常使用玻璃纤维、碳纤维、玄武岩纤维或者芳纶等纤维增强体。树脂基复合材料在航空、汽车、海洋工业中有广泛的应用。【测试方法和样品要求】 测试方法:瞬态热线法 样品要求:直径或边长≥25mm,厚度>5mm,两块,形状不限。 若要测试样品不同方向导热系数

深圳先进院高性能导热复合材料研究获系列进展

  近期,中国科学院深圳先进技术研究院集成所先进材料中心研究员孙蓉团队在高性能导热复合材料研究中取得一系列进展。  现代电子器件逐渐向高度集成化和高功率化发展,如果器件内部产生的热量得不到有效地散发,将会引起热失效。为了保证电器器件的工作表现和寿命,有效的散热成为了制约电子产品发展的主要因素。解决散

深圳先进院高性能导热复合材料研究获系列进展

  近期,中国科学院深圳先进技术研究院集成所先进材料中心研究员孙蓉团队在高性能导热复合材料研究中取得一系列进展。  现代电子器件逐渐向高度集成化和高功率化发展,如果器件内部产生的热量得不到有效地散发,将会引起热失效。为了保证电器器件的工作表现和寿命,有效的散热成为了制约电子产品发展的主要因素。解决散

宁波材料所在制备高导热环氧复合材料方面取得进展

  第三代半导体材料先进电子器件的功能性、集成度和功率密度的持续提高,势必会造成器件运行产生废热的高度集中。电子封装材料是电子器件热管理的关键,目前使用的环氧树脂电子封装材料的导热性能已不能满足先进半导体材料的发展需求。石墨烯自发现以来就凭借诸多优异的物理性能而备受关注,石墨烯所具有的超高导热系数(

概述纳米三氧化二铝的使用性能

  1.绝缘材料专用陶瓷粉(纳米氧化铝)涂层,利用勃姆石溶胶和纳米α-纳米氧化铝陶瓷粉粒子(主要由α相以及少量γ相氧化铝组成)形成的混合浆料制备具有一定厚度的氧化铝绝缘涂层,可以满足高温(400 ℃)条件下仪器设备对高绝缘性能的要求。实验证明,当纳米α-纳米氧化铝陶瓷粉的添加量为50%(质量分数)时

宁波材料所在石墨烯/高分子导热复合材料方面取得进展

   随着半导体制造技术的不断进步和电子工业的不断发展,电子设备的散热问题日益受到关注,越来越多的导热材料被应用于携带型装置、电子设备和能源领域。高分子聚合物是经常用于电子设备制造和集成电路封装的材料,但是高分子本身热导率不高,一般低于0.5 W/m·K,不能满足高功率电子装备的应用需求。针对这一缺

复合塑料导热性能超越不锈钢

塑料的导热性一直差强人意,但科学家新开发出一种复合塑料,颠覆了这一认知。据物理学家组织网14日报道,由美国东北大学与陆军研究实验室联合研发的新型塑料陶瓷复合材料,不仅拥有羽毛般的轻盈质感,更具备卓越的导热性能,有望成为现代电子设备的散热利器。热管理一直是电力电子设备和雷达天线面临的技术瓶颈。手机过热

常用非金属材料

非金属材料是指除金属以外的其他一切材料,非金属材料具有优良的耐腐蚀性能,原料来源丰富,品种多样,适合于因地制宜,就地取材,是一种有着广阔发展的工程材料。非金属材料分为无机非金属材料、有机非金属材料及复合材料。无机非金属材料主要有陶瓷、搪瓷、岩石、玻璃等,有机非金属材料主要有橡胶、塑料、涂料等,复合材

我国牵头制定的首个纳米金刚石国际标准正式发布

近日,我国牵头制定的ISO国际标准《特殊用途功能性填料 聚合物用纳米金刚石》(ISO 6031:2025)正式发布。该标准的成功发布,标志着我国纳米级金刚石材料产业实现了从“深耕积淀”到“引领国际”的历史性跨越。纳米金刚石是一种颗粒尺度在10-9米范围内的碳纳米材料,被誉为材料界的“工业味精”,具有

导热仪

导热系数: 单位时间内在单位温度梯度下沿热流方向通过材料单位面积传递的热量。单位为瓦每米开尔文[W/(m·K)] 。用沿试样长度方向埋设在试样中的线状电导体(热线)进行局部加热,热线载有已知恒定功率的电流,即在时间上和试样长度方向上功率不变。从热线的功率和接通电流加热后已知两个时间间隔的温度可以计算

导热系数

导热系数是表示一种材料传导热量能力的一个物理量。如两块同样厚的材料,一块是铜块,一块是软木块,把它们放在比本身温度高的环境中,可立即感觉到铜块温度升高,而对软木块则在短时间内感受不到。这说明两种材料对热量传导的能力不同,把这种材料对热量的不同传导能力以数字表示就称为导热系数,其数值等于:当材料层的厚

导热系数平板导热仪的工作原理

 一、概述  导热系数综合测试系统是依据GBl0294-88标准设计制造,用于检测绝热材料导热系数的专用设备。  导热系数(或热阻)是保温材料主要热工性能之一,是鉴别材料保温性能质量的主要标志。近几年来,随着建筑节能法规的出台,我国对建筑节能越来越重视。因此,准确测定该参数是十分必要的.对于合理选材

导热仪的导热系数及其标准特点

导热系数: 单位时间内在单位温度梯度下沿热流方向通过材料单位面积传递的热量。单位为瓦每米开尔文[W/(m·K)] 。用沿试样长度方向埋设在试样中的线状电导体()进行局部加热,载有已知恒定功率的电流,即在时间上和试样长度方向上功率不变。从的功率和接通电流加热后已知两个时间间隔的温度可以计算导热系数,此

导热分析仪的导热系数测量

导热分析仪,是采用一束激光照射样品,用红外检测器测量样品背面温度的升高,来计算样品的热扩散系数的仪器。具有快速、方便的特点。导热系数(或热阻)是保温材料主要热工性能之一,是鉴别材料保温性能好坏的主要标志。测量样品(固体、液体或粉末)的导热系数随温度的函数关系。测定建筑材料导热系数方法可分为二大类,稳

什么是平板导热仪?平板导热仪作用

   什么是平板导热仪?平板导热仪作用:导热测试仪是一种基于傅立叶导热定律而进行材料导热系数测量的仪器,在导热过程中,单位时间内通过给定截面的热量,与该截面的面积和垂直于该截面方向的温度梯度成正比。  平板导热仪稳态法测量导热系数的困难主要在于相关参量的准确获得。由于导热系数是标志一个过程(传热)的

科研人员研发出高各向异性导热石墨烯复合材料实现光电热协同控冰

  中国科学院合肥物质科学研究院固体物理研究所王振洋团队根据“3D打印结构设计-激光界面工程-跨尺度性能调控”设计思路,开发出具有高各向异性导热比、高光热/电热转换效率兼具良好疏水性和机械性能的石墨烯/聚合物复合材料双层结构。  为利用石墨烯片的各向异性导热性能,研究采用双喷嘴熔融沉积成型3D打印技

导热系数测量

在某些应用场合,了解陶瓷材料的导热系数,是测量其热物理性质的关键。陶瓷耐火材料常被用作炉子的衬套,因为它们既能耐高温,又具有良好的绝热特性,可以减少生产中的能量损耗。航天飞机常使用陶瓷瓦作挡热板。陶瓷瓦能承受航天飞机回到地球大气层时产生的高温,有效防止航天器内部关键部件的损坏。在现代化的燃气涡轮电站

导热仪概述

工作原理导热率,又称为热导率、导热系数,定义为单位温度梯度在单位时间内经单位导热面所传递的热量。表示物体传导热量的能力。其导出式来源于傅立叶定律:Q=KA△T/dR=△T/Q式中:Q:热量WK:热导率W/m.kA:接触面积d:热量传递距离△T:温度差R:热阻值根据导热机理不同,导热系数测量方法分为稳

瞬态平面热源法导热仪

测试对象 金属、陶瓷、合金、矿石、聚合物、复合材料、纸、织物、泡沫塑料(表面平整的隔热材料、板材)、矿物棉、水泥墙体、玻璃增强复合板CRC、水泥聚苯板、夹心混凝土、玻璃钢面板复合板材、纸蜂窝板等等,测试对象广泛。 工作原理 瞬态平面热源技术(TPS)是用于测量导热系数的一种新型的方法,由瑞典Chal

氮化铝的用途和应用

用途氮化铝是良好的耐热冲击材料,是熔铸纯铁、铝或铝合金理想的坩埚材料。用途导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属腐蚀的能力强,是熔铸纯铁、铝和铝合金理想的坩埚材料。应用如下:1、导热硅胶和导热环氧树脂超高导热纳米复合硅胶具有良好的导热性,良好的电绝缘性,较宽的电绝缘性和使用温度(工

热电制冷的原理(二)

(3)汤姆逊效应当电流流过有温度梯度的导体时,在导体和周围环境之间将进行能量的交换,但由于其换热在热电制冷系统中影响较小,故可以忽略不计。(4)焦尔效应导体中通过电流时所产生的热量等于导体电阻R和电流I平方的乘积,即(5)傅里叶效应经过均匀介质沿某一方向传导的热量与垂直这个方向的面积 A 和该方向的

导热仪方法选择

从方法上来说:热流计法属于稳态法:稳态法是一种基准方法,zui开始是用于检测其他方法精度的依据。但是实际上,稳态法能准确测量的影响因素太多(环境温度,空气对流等),而且操作不方便,需要操作人员具有比较强的专业知识,所以现在连国外基本都不用稳态法了,改而研究瞬态法。现在研究较多的是瞬态热线法,因为理论

导热仪的特点

导热仪特点:  1. 迅速并容易测量各种类型样品的导热系数(热导率)。  2. 依据样品和测量温度的种类,可选择适当的传感器(探头)。  3. 液晶显示屏幕,测量中能直接观测升温曲线。  4. 升温曲线采用时间对数显示,可确认测量值的线性。  5. 自动判断样品适当的加热电流値(使用PD传感器时)。

导热仪的应用

导热仪在热力学中有着很重要的运用:1、导热仪在液体材料上的应用在液体材料测试过程中,对流会对测试数据造成误差。而消除对流的影响,主要可以采用以下两种方式:减小样品体积;缩短测试时间。导热仪配备有专门的小剂量液体测试组件,且测试时间快速,可消除对流对实验数据造成的影响。非常适合研究添加不同纳米材料(纳

什么是导热仪?

该热物性测试仪采用先进的瞬变平面热源法及纵向热流技术,具有方便、快捷、的特点,可用来测量各种不同类型材料的热导率、热扩散率以及热熔,适用的热导系数范围0.015-100W/MK之间,适用样品类型:固体、粉末、涂层、薄膜、液体、各向异性材料等多种不同形式材料。参照标准GB5598-85,GB3399-

金属导热仪简介

该仪器采用试样直接通电纵向热流法,适用于80°~900℃温度范围内测量金属无相变温度下的导热系数,由计算机自动完成测试。满足了材料检测研究部门对金属材料导热系数的测试要求。仪器参考标准:金属高温导热系数测量方法。主要技术指标1、 导热系数测试范围:5~400W/m·K;2、 准确度:优于5%;3、 

快速导热仪主要测量液体导热系数、导温系数和比热

 DRE-II快速导热仪采用瞬态法,主要测量液体导热系数、导温系数(热扩散系数)和比热。具有测量速度快、所需样品量少、高精度、高分辨率、高复现性等特点。由计算机控制进行自动测量。广泛适用于石油、化工、生物、制药、能源、动力工程等领域内工质流体的导热系数测量。    快速导热仪主要部件    快速导热