中国科学技术大学发现第六大植物激素的首个运输蛋白
在日常生活中,隧道可以帮助人们翻山越岭。在植物细胞内,当内部物质穿过细胞膜时,往往也会通过类似的“隧道”。 记者从中国科学技术大学获悉,该校孙林峰团队在第六大植物激素——油菜素内酯的运输领域取得突破性进展。他们发现了首个油菜素内酯的运输蛋白,对农业生产意义重大,研究成果3月22日发表于《科学》杂志。 油菜素内酯又名“芸苔素内酯”,可以调控植物体的生长、伸长、开花和育种等多个方面,是一种高效广谱、无毒无害的新型植物生产调节剂。1996年,学界将其列为继生长素、脱落酸、细胞分裂素、乙烯和赤霉素之后的第六大类植物激素。它在细胞内部合成,但是需要运输到细胞外才能发挥作用。然而,从被发现至今已80余年,它的运输过程却一直是个未解之谜,这极大地限制了油菜素内酯信号调控的研究。 在研究第一大类植物激素——生长素的运输过程中,孙林峰团队有了意外发现。“ABCB19蛋白被广泛认定为生长素的运输蛋白,突变蛋白意味着功能破坏,即不再能运输生长......阅读全文
中国科学技术大学发现第六大植物激素的首个运输蛋白
在日常生活中,隧道可以帮助人们翻山越岭。在植物细胞内,当内部物质穿过细胞膜时,往往也会通过类似的“隧道”。 记者从中国科学技术大学获悉,该校孙林峰团队在第六大植物激素——油菜素内酯的运输领域取得突破性进展。他们发现了首个油菜素内酯的运输蛋白,对农业生产意义重大,研究成果3月22日发表于《科学》杂
《自然通讯》华人学者破解植物激素运输的分子机制
植物生长,由来自于植株内激素的一连串信号“精心安排”。一大组称为细胞分裂素(cytokinins)的植物激素,起源于植物根部,它们由根部到茎和叶片生长区域的运输过程,能够刺激植物的发育。虽然以往已经确定了这些植物激素,但对于它们在植物体内运输的分子机制还知之甚少。 目前,由美国能源部(DO
甲状腺激素的分泌与运输
1.分泌:在垂体促甲状腺激素刺激下,经过一系列变化,T3、T4被甲状腺上皮细胞分泌、释放入血液。2.运输:血液中99%以上的T3、T4和血浆蛋白结合,其中,主要和甲状腺素结合球蛋白结合,少量和前白蛋白、白蛋白结合。约占血浆中总量0.4%的T3和0.04%的T4是游离的,只有游离的T3、T4才能进入靶
甲状腺激素的分泌和运输
1.分泌:在垂体促甲状腺激素刺激下,经过一系列变化,T3、T4被甲状腺上皮细胞分泌、释放入血液。2.运输:血液中99%以上的T3、T4和血浆蛋白结合,其中,主要和甲状腺素结合球蛋白结合,少量和前白蛋白、白蛋白结合。约占血浆中总量0.4%的T3和0.04%的T4是游离的,只有游离的T3、T4才能进入靶
类固醇激素的运输方法
类固醇激素通过与载体蛋白(血清蛋白结合并增加激素在水中的溶解度)结合而通过血液运输。一些例子是性激素结合球蛋白(SHBG)、皮质类固醇结合球蛋白和白蛋白。大多数研究表明,激素只有在不受血清蛋白结合的情况下才能影响细胞。为了保持活跃,类固醇激素必须从它们的血液溶解蛋白中释放出来,并且要么与细胞外受体结
中国科大等在植物激素油菜素内酯运输领域取得重要进展
3月22日,中国科学技术大学生命科学与医学部孙林峰团队联合比利时根特大学Eugenia Russinova团队,在《科学》(Science)上发表了题为Structure and function of the Arabidopsis ABC transporter ABCB19 in brassi
中国科大等在植物激素油菜素内酯运输领域取得重要进展
3月22日,中国科学技术大学生命科学与医学部孙林峰团队联合比利时根特大学Eugenia Russinova团队,在《科学》(Science)上发表了题为Structure and function of the Arabidopsis ABC transporter ABCB19 in brassi
甲状腺激素分泌、运输、代谢及调节
1.分泌:在垂体促甲状腺激素刺激下,经过一系列变化,T3、T4被甲状腺上皮细胞分泌、释放入血液。2.运输:血液中99%以上的T3、T4和血浆蛋白结合,其中,主要和甲状腺素结合球蛋白结合,少量和前白蛋白、白蛋白结合。约占血浆中总量0.4%的T3和0.04%的T4是游离的,只有游离的T3、T4才能进入靶
植物激素的特征
荷尔蒙这个词来源于希腊语,意思是启动。植物激素影响基因表达和转录水平、细胞分裂和生长。它们是在植物内自然产生的,尽管真菌和细菌会产生非常相似的化学物质,它们也会影响植物的生长。大量相关的化合物是由人类合成的。它们用于调节栽培植物、杂草和体外生长的植物和植物细胞的生长;这些人造化合物被称为植物生长调节
植物激素的作用
植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。
植物激素的分类
即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响
植物激素有哪些
生长素、赤霉素、细胞分裂素、脱落酸、乙烯、油菜素甾醇等。1、生长素生长素是第一个被发现的植物激素。生长素中最重要的化学物质为3-吲哚乙酸。生长素有调节茎的生长速率、抑制侧芽、促进生根等作用,在农业上用以促进插枝生根,效果显著。2、赤霉素赤霉素是一类非常重要的植物激素,参与许多植物生长发育等多个生物学
植物激素的特点
五大类植物激素分为生长素,赤霉素,细胞分裂素,脱落酸和乙烯,其作用机理都是能促进细胞生长,具有以下特点:植物生长素与动物生长素完全不同。土壤中的某些微生物也可以分泌植物激素,影响植物生长,还有就是生长素作用尤为诱导植物体内营养物质向生长素浓度高处运输,以达到促进生长目的。
植物激素的作用
植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。
植物激素的分类
即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(abscisic acid,ABA)、乙烯(ethylene,ETH)和油菜素甾醇(brassinosteroid,BR)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响
什么是植物激素?
植物激素是信号的分子,内产生的植物,发生在非常低的浓度。植物激素控制植物生长和发育,从各个方面胚胎发生,的调节器官大小,病原体防御,应力耐受性,并通过对生殖发育。与动物不同(其中激素的产生仅限于专门的腺体)每个植物细胞都能产生激素。温特和蒂曼创造了“植物激素”一词,并在他们1937年出版的书名中使用
植物激素的作用
植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。
甲状腺激素的分泌、运输、代谢与调节
1.分泌:在垂体促甲状腺激素刺激下,经过一系列变化,T3、T4被甲状腺上皮细胞分泌、释放入血液。2.运输:血液中99%以上的T3、T4和血浆蛋白结合,其中,主要和甲状腺素结合球蛋白结合,少量和前白蛋白、白蛋白结合。约占血浆中总量0.4%的T3和0.04%的T4是游离的,只有游离的T3、T4才能进入靶
甲状腺激素的分泌、运输、代谢与调节
1.分泌:在垂体促甲状腺激素刺激下,经过一系列变化,T3、T4被甲状腺上皮细胞分泌、释放入血液。2.运输:血液中99%以上的T3、T4和血浆蛋白结合,其中,主要和甲状腺素结合球蛋白结合,少量和前白蛋白、白蛋白结合。约占血浆中总量0.4%的T3和0.04%的T4是游离的,只有游离的T3、T4才能进入靶
其他植物激素的介绍
主要有油菜素甾醇、水杨酸、茉莉酸等,比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等
植物激素的研究历史
C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的
植物激素存在的部位
生长素在低等和高等植物中普遍存在。生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。用胚芽鞘切段证明植物体内的生长素通常只能从植物的形态上端(根尖分生区或芽)向下端(茎)运输,而不能相反
植物激素的作用介绍
1.低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性
关于植物激素的简介
植物激素(Phytohormone)亦称植物天然激素或植物内源激素。是指植物体内产生的一些微量而能调节(促进、抑制)自身生理过程的有机化合物。已知植物体内产生的激素有六大类,即生长素、赤霉素、细胞分裂素、脱落酸、乙烯和油菜素甾醇。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样
乙烯植物激素的应用
乙烯是气体,在田间应用不方便。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。
植物膜运输系统抗体介绍
在细胞生物学中,膜转运是指调节诸如离子和小分子之类的溶质通过生物膜的机制的集合。生物膜是脂质双层,其中嵌入了蛋白质。穿过膜的调节归因于选择性膜的渗透性,这是生物膜的一种特征,使它们能够分离具有不同化学性质的物质。换句话说,它们可能对某些物质具有渗透性,但对其他物质则不具有渗透性。大多数溶质通过膜的运
植物激素的作用和种类
植物激素(Phytohormone)亦称植物天然激素或植物内源激素。是指植物体内产生的一些微量而能调节(促进、抑制)自身生理过程的有机化合物。已知植物体内产生的激素有六大类,即生长素、赤霉素、细胞分裂素、脱落酸、乙烯和油菜素甾醇。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。从
常见的植物激素有哪些?
主要有油菜素甾醇、水杨酸、茉莉酸等,比较公认的第六大类植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾体类激素,与动物甾体激素的作用机理不同。其具有促进细胞伸长和细胞分裂、促进维管分化、促进花粉管伸长而保持雄性育性、加速组织衰老、促进根的横向发育、顶端优势的维持、促进种子萌发等
植物激素的作用和分类
植物激素的作用植物激素是植物细胞接受特定环境信号诱导产生的、低浓度时可调节植物生理反应的活性物质。在细胞分裂与伸长、组织与器官分化、开花与结实、成熟与衰老、休眠与萌发以及离体组织培养等方面,分别或相互协调地调控植物的生长发育与分化。分类即生长素(auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱
植物激素的基本概念
中文名植物激素外文名plant hormone,phytohormone别 名植物天然激素或植物内源激素类 型赤霉素、脱落酸、乙烯、细胞分裂素、生长素、油菜素甾醇来 源自身代谢产生的一类有机物质作 用调控植物的生长、发育与分化