二维材料研发取得新成果

原文地址:http://news.sciencenet.cn/htmlnews/2024/4/520587.shtm......阅读全文

物理所研究团队发展出新的二维材料图案化的方法

  二维材料具有原子级厚度和较高的比表面积,所有原子处于表面,导致其表面对表面吸附和外界环境较为敏感。二维半导体材料在电子学与光电子学器件领域具有广阔的应用前景,有望成为下一代小型化电子器件的核心材料。为实现此类应用,需要对材料进行剪裁。通过常规的微纳加工技术,包括光刻和反应离子干法刻蚀或化学溶液湿

宁波材料所碲化铋基复合热电材料制备取得新进展

  热电材料是一种基于半导体的塞贝克效应或帕尔贴效应实现热能与电能相互转换的功能材料,包括热电发电和热电制冷两种应用形式。碲化铋基合金在室温附近具有良好的热电性能,作为一类重要的材料体系,在激光二极管、光纤接头、CCD、红外探测等光电技术领域已广泛应用于局部制冷或高精度温度控制,此外还

新型二维材料研究获国家自然科学奖二等奖

6月24日,2023年度国家科学技术奖励大会在北京举行。由中国科学院金属研究所(以下简称金属所)完成的“新型二维材料的创造、制备与物性研究”项目获国家自然科学奖二等奖。《中国科学报》从金属所获悉,该项目深入系统地开展了二维材料的化学气相沉积(CVD)制备研究,解决了三类典型的具有已知三维母体的二维材

新型二维材料研究获国家自然科学奖二等奖

6月24日,2023年度国家科学技术奖励大会在北京举行。由中国科学院金属研究所(以下简称金属所)完成的“新型二维材料的创造、制备与物性研究”项目获国家自然科学奖二等奖。《中国科学报》从金属所获悉,该项目深入系统地开展了二维材料的化学气相沉积(CVD)制备研究,解决了三类典型的具有已知三维母体的二维材

碲化镉薄膜太阳能电池的结构

碲化镉薄膜太阳能电池是在玻璃或是其它柔性衬底上依次沉积多层薄膜而构成的光伏器件。一般标准的碲化镉薄膜太阳能电池由五层结构组成:1、玻璃衬底:主要对电池起支架、防止污染和入射太阳光的作用。2、TCO层:即透明导电氧化层。主要起的是透光和导电的作用。3、CdS窗口层:n型半导体,与p型CdTe组成p-n

碲化锌的理化性质、制备方法和用途

理化性质碲化锌是灰色或棕红色粉末。通过升华可得宝石红立方系晶体。在干燥空气中稳定。熔点1238.5℃,相对密度6.3415。遇水则分解,放出有恶臭和有毒的碲化氢气体。用途:作半导体中光电导体。化学式ZnTe。分子量192.97。灰色或棕红色粉末或红色立方Chemicalbook晶体。有毒!通过升华可

什么是碲化镉薄膜太阳能电池?

碲化镉薄膜太阳能电池简称CdTe电池,它是一种以p型CdTe和n型CdS的异质结为基础的薄膜太阳能电池。

碲化镉薄膜太阳能电池的优点

1、理想的禁带宽度:CdTe的禁带宽度一般为1.47eV,CdTe的光谱响应和太阳光谱非常匹配。2、高光吸收率:CdTe的吸收系数在可见光范围高达104cm-1以上,95%的光子可在1μm厚的吸收层内被吸收。3、转换效率高:碲化镉薄膜太阳能电池的理论光电转换效率约为28%。4、电池性能稳定:一般的碲

锂电池材料硒化物的基本信息介绍

  硒是人体及生物体必需的微量元素之一, 它能调节维生素A 、C 、E 、K 的吸收和消耗, 与维生素E 协同保护细胞膜, 并在体内参与多种酶的催化反应, 而且硒还是谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)和碘甲状腺脱碘酶(iodothyronine deio

锂电池材料硒化物的药理作用介绍

  硒的药理作用主要是参与GSH-Px 的合成及抗氧化作用。每分子GSH-Px 含有4 个硒原子, 它们为活性中心元素, 是GSH-Px 的辅助因子。GSHPx能催化还原型谷胱甘肽变成氧化型谷胱甘肽, 使有毒的过氧化物还原成无毒的羟基化合物, 并使H2O2 分解, 从而保护细胞膜及细胞器膜的结构和功

常见的氧族元素的化合物碲化氢

碲化氢是无色、有恶臭、极毒的无色气体,不稳定,加热分解,有较强的还原性,可以被一些常见的氧化剂氧化。

化学所在制备强荧光二维共轭聚合物半导体材料方面获进展

二维共轭聚合物(2DCPs)是一类新型的半导体材料体系。2DCPs独特的拓展二维共轭结构,预示着优异的光电特性,在有机电子学领域颇具应用前景。然而,目前报道的多数2DCPs材料的光电性能相对较差,以及具有强荧光特性的二维共轭聚合物半导体方面的报道较少。该类材料荧光猝灭的原因是2DCPs体系中紧密的层

大化所二维金属碳化物基储能材料研究取得新进展

  近日,我所二维材料与能源器件研究组(DNL21T3)吴忠帅研究员团队通过在KOH溶液中震荡处理二维金属碳化物纳米片(MXene),成功制备层间距扩大的碱化MXene纳米带,并发现其具有优异的储钠和储钾性能。相关研究成果发表在《纳米能源》(Nano Energy)杂志上(DOI: 10.1016/

微型二维材料调控平台面世

科技日报北京8月25日电 (记者刘霞)美国和日本科学家开发出全球首个基于微机电系统(MEMS)的二维(2D)材料原位转角调控平台。这个指甲大小的平台名为“MEGA2D”,具备高度灵活性和精确度,可通过电压精确控制2D材料的间距、旋转等。相关论文发表于最新一期《自然》杂志。MEGA2D是一种可以扭转2

微型二维材料调控平台面世

  美国和日本科学家开发出全球首个基于微机电系统(MEMS)的二维(2D)材料原位转角调控平台。这个指甲大小的平台名为“MEGA2D”,具备高度灵活性和精确度,可通过电压精确控制2D材料的间距、旋转等。相关论文发表于最新一期《自然》杂志。MEGA2D是一种可以扭转2D材料的MEMS平台。 图片来源:

新型磁性二维材料研究获进展

  复旦大学教授张远波团队在二维磁性材料领域取得重大突破——发现一种新型的磁性二维材料Fe3GeTe2,为研究二维巡游磁性提供了一个全新的理想体系。今天,这一研究成果发表于《自然》。  伴随着单原子层的石墨材料——石墨烯被成功分离出来,二维材料的概念被正式提出来。近年来,磁性二维材料成为新的研究热点

物理所预言新型二维大能隙拓扑绝缘体

  众所周知,二维拓扑绝缘体的体内是绝缘的,而其边界是无能隙的金属导电态。且这种金属态中存在自旋-动量的锁定关系,相反自旋的电子向相反的方向运动,由于受到时间反演不变性的保护,它们之间的散射是禁止的,因此是自旋输运的理想“双向车道”高速公路,可用于新型低能耗高性能自旋电子器件。当前实验证实的二维拓扑

低温光学扫描探针显微镜系统研发及几种二维材料

      二维原子/分子晶体材料因独特的物理性质而受到广泛关注。      由于分子束外延生长技术可以用来制备高质量的二维原子/分子晶体材料,而扫描探针显微学因其超高空间分辨率可以对材料的生长质量进行表征,同时还可以获得其电子结构等方面的信息,因此分子束外延生长与扫描探针显微学相结合是研究二维原子

锂电池添加剂材料有机硼化物的介绍

  含有B-C键或者说含有硼原子的有机化合物,叫有机硼化物。主要的有硼烷、烃基取代硼烷和含氮的硼化物。硼烷(即硼氢化合物)又可分为硼烷和氢化硼烷。烷基硼:由硼烷与不对称烯烃按照反马氏规则进行加成,生成三取代烷基硼。三烷基硼是有机合成的重要试剂和中间体,在有机合成方面用途广泛。如与烯烃进行硼氢化-氧化

上海应物所二维纳米材料合成及环境催化研究取得新进展

  近日,英国皇家学会著名的《能源与环境科学》(Energy & Environmental Science)杂志在线发表了中国科学院上海应用物理研究所物理生物学实验室和上海光源在二维纳米材料及污染物催化降解方面的研究成果(DOI:10.1039/C1030EE00495B)。   

二维双层扭角过渡金属硫族化合物材料制备新方法找到

原文地址:http://news.sciencenet.cn/htmlnews/2024/1/516435.shtm

化学所二维共轭聚合物光伏材料的分子设计研究获系列进展

  聚合物光伏材料的分子结构与其光伏性能具有十分密切的关系。根据目前报道的结果来看,对光伏聚合物的分子结构优化大多是针对某一个聚合物来进行的,也就是说,对于不同的分子结构,人们需要采用不同的方式对其进行优化。这不仅增大了分子结构优化工作的难度,也容易导致错过很多具有潜力的分子结构单元。因此,找到一种

常见的氧族元素的化合物三氧化碲

三氧化碲〔TeO3〕是一种无机化合物。碲的化合价为+6。三氧化碲有两种形式,一种是红色的α-TeO3,一种是灰色的β-TeO3。

常见的氧族元素的化合物碲酸钡

碲酸钡,由二氧化碲和过氧化钡反应产生,与钼酸钡为同晶型。

常见的氧族元素的化合物碲酸钡

碲酸钡,由二氧化碲和过氧化钡反应产生,与钼酸钡为同晶型。

常见的氧族元素的化合物原碲酸

原碲酸是可溶于水、易溶于热水的白色晶体,化学式H6TeO6,是很弱的二元酸(电离常数为K1=2.09X10^-8, K2=6.46X10^-12),一般只有2个氢原子会被取代,但也有个别情况6个氢原子都能被取代。原碲酸加热分解出三氧化碲。原碲酸是弱酸。原碲酸有强氧化性,能溶解银,和浓盐酸的混酸(存在

宁波材料所在二维纳米防护薄膜材料方面取得进展

  石墨烯具有大的比表面积、高的化学惰性以及优异的阻隔性,被认为是已知最薄的防护材料,采用化学气相沉积(CVD)法制备的石墨烯薄膜可直接用于金属的腐蚀防护,逐渐成为制备石墨烯防护薄膜最主要的方法。但石墨烯薄膜在制备过程不可避免会引入空位、晶界等结构缺陷,将其长时间暴露在空气中,腐蚀介质容易通过这些缺

二维拓扑绝缘体研究获进展

  理论研究表明,具有蜂窝状晶格结构的薄膜是二维拓扑绝缘体的重要平台,也是实现量子自旋霍尔效应的理想材料。该体系独特的晶格结构使其在布里渊区的K点处产生狄拉克锥型能带结构,如石墨烯。由于碳元素的自旋轨道耦合强度低,石墨烯难以在狄拉克点处打开能隙,从而实现量子自旋霍尔效应。相比之下,碲元素因强自旋轨道

二维锡烯拓扑材料研究取得进展

近日,中国科学技术大学合肥微尺度物质科学国家研究中心教授王兵和副教授赵爱迪研究团队与清华大学助理教授徐勇、教授段文晖以及美国斯坦福大学教授张首晟合作,成功制备出具有纯平蜂窝结构的单层锡烯,并结合第一性原理计算证实了其存在拓扑能带反转及拓扑边界态。相关研究成果11月5日在线发表在《自然-材料》(Nat