二维拓扑绝缘体研究获进展

理论研究表明,具有蜂窝状晶格结构的薄膜是二维拓扑绝缘体的重要平台,也是实现量子自旋霍尔效应的理想材料。该体系独特的晶格结构使其在布里渊区的K点处产生狄拉克锥型能带结构,如石墨烯。由于碳元素的自旋轨道耦合强度低,石墨烯难以在狄拉克点处打开能隙,从而实现量子自旋霍尔效应。相比之下,碲元素因强自旋轨道耦合作用,可在狄拉克点打开足够大的能隙并产生边缘态,成为实现室温量子自旋霍尔效应的理想材料。然而,碲元素复杂的化合价态使得由碲元素构成的蜂窝状结构生长难度较大,而未被报道。 近期,中国科学院上海高等研究院、上海微系统与信息技术研究所及上海科技大学的科研人员,通过分子束外延法在1T-NiTe2薄膜上合成了高质量的蜂窝状碲烯,并通过扫描隧道显微镜和低能电子衍射揭示了其蜂窝状晶格结构。 该团队利用基于上海光源原位电子结构综合研究平台的高精度微聚焦角分辨光电子能谱线站,直接观测到碲烯中拓扑能隙。进一步,该团队通过扫描隧道谱学技术结合能带计......阅读全文

二维拓扑绝缘体研究获进展

  理论研究表明,具有蜂窝状晶格结构的薄膜是二维拓扑绝缘体的重要平台,也是实现量子自旋霍尔效应的理想材料。该体系独特的晶格结构使其在布里渊区的K点处产生狄拉克锥型能带结构,如石墨烯。由于碳元素的自旋轨道耦合强度低,石墨烯难以在狄拉克点处打开能隙,从而实现量子自旋霍尔效应。相比之下,碲元素因强自旋轨道

拓扑绝缘体的实验研究获系列进展

  中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室马旭村研究员领导的研究组与清华大学物理系薛其坤教授领导的研究组合作,在三维拓扑绝缘体薄膜的外延生长、电子结构及有限尺寸效应方面进行研究,取得一系列进展。     拓扑绝缘体是最近几年发现的一种新的物质形态。

半导体所等在拓扑绝缘体研究中获进展

  拓扑绝缘体是目前凝聚态物理的前沿热点问题之一。它具有独特的电子结构,它在体内能带存在能隙,表现出绝缘体的行为;表面或边界的能带是线性的无能隙的Dirac锥能谱,因而是金属态。这种量子物态展现出丰富而新奇的物性,如量子自旋霍尔效应、磁电耦合、量子反常霍尔效应等。由于这种新奇的物性源

拓扑绝缘体量子输运性质研究取得进展

电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修正可

拓扑绝缘体量子输运性质研究取得进展

  电子-电子相互作用、量子干涉和无序对输运性质的影响是凝聚态物理研究的重要主题。量子干涉的一阶效应包括被广泛研究的弱局域化和反弱局域化效应,分别对应于正交对称性和辛对称性的体系。2004年研究人员发现,对于前者,比如无序足够强的弱自旋轨道耦合半导体,电子-电子相互作用和量子干涉效应产生的二阶量子修

硫族化合物三维拓扑绝缘体高压研究获进展

  拓扑绝缘体是当前凝聚态物理研究的重要量子材料之一。理想的拓扑绝缘体体内为绝缘态,而表面为金属态,表面电子态受轨道-自旋相互作用和时间反演对称性的保护。由于具有M2X3(M通常为五族金属元素Bi或Sb,X为六族非金属元素Te、Se或S)化学组成的硫族化合物的原子具有相近的电负性,同时又具有斜方六面

单元素二维拓扑绝缘体锗烯面世

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500858.shtm荷兰科学家研制出了首个由单元素组成的二维(2D)拓扑绝缘体锗烯,其仅由锗原子组成,还具有在“开”和“关”状态之间切换的独特能力,这一点类似晶体管,有望催生更节能的电子产品。相关研究刊发

二维锡烯拓扑材料研究取得进展

近日,中国科学技术大学合肥微尺度物质科学国家研究中心教授王兵和副教授赵爱迪研究团队与清华大学助理教授徐勇、教授段文晖以及美国斯坦福大学教授张首晟合作,成功制备出具有纯平蜂窝结构的单层锡烯,并结合第一性原理计算证实了其存在拓扑能带反转及拓扑边界态。相关研究成果11月5日在线发表在《自然-材料》(Nat

二维锡烯拓扑材料研究取得进展

  近日,中国科学技术大学合肥微尺度物质科学国家研究中心教授王兵和副教授赵爱迪研究团队与清华大学助理教授徐勇、教授段文晖以及美国斯坦福大学教授张首晟合作,成功制备出具有纯平蜂窝结构的单层锡烯,并结合第一性原理计算证实了其存在拓扑能带反转及拓扑边界态。相关研究成果11月5日在线发表在《自然-材料》(N

北大拓扑绝缘体纳米材料光热电效应研究获突破

  据北京大学新闻网消息,拓扑绝缘体的材料制备和量子输运特性是近年来国际研究前沿的一个热点。在众多拓扑绝缘体材料中,Bi2Se3是拓扑绝缘体家族中一种重要的三维强拓扑绝缘体。拓扑绝缘体纳米结构因其巨大的比表面积和增强的表面电导贡献非常有利于探索拓扑绝缘体奇异表面态的物理性质和开发拓扑绝缘体在自旋电子

新型二维原子晶体硒化铜的制备及其拓扑物性研究获进展

  二维过渡金属硫族化合物以其优异性能在光电、催化、新能源和传感器等领域展现出巨大应用潜能。与层状结构的过渡金属二硫化物不同,过渡金属单硫化物的体相都是非层状结构。因此,相比于二维过渡金属二硫化物,二维过渡金属单硫化物的制备比较困难,关于其物性研究也鲜有报道。去年,中国科学院物理研究所/北京凝聚态物

拓扑自旋电子学研究获进展

  华南师范大学物理学院教授邓明勋/研究员王瑞强团队与合作者,在拓扑自旋电子学领域取得重要进展:在非磁拓扑Dirac半金属材料中发现了一种全新的自旋极化现象——非平衡隐藏自旋极化。相关成果9月5日在线发表于《物理评论快报》(Physical Review Letters)。  隐藏自旋极化是指在中心

物理所强关联拓扑绝缘体电子结构研究取得进展

  拓扑绝缘体是近年来凝聚态物理的研究热点之一。这类材料不同于传统的“金属”和“绝缘体”,其体内部为有能隙的绝缘态,其表面则是无能隙的金属态。这种金属表面态是由其内在电子结构拓扑性质决定的,受时间反演不变性的保护,因而受缺陷、杂质等外界影响较小。目前,理论上预言的拓扑绝缘体都是半导体材料,电子间的关

拓扑绝缘体常温常压下表面态行为研究取得进展

  不同于传统意义上的“金属”或“绝缘体”,拓扑绝缘体代表一种全新的量子物态:它的体态是有能隙的半导体/绝缘体,表面则表现为没有能隙的金属态。这种完全由材料体态电子结构的拓扑性质所决定的表面态,由于受到对称性的保护,基本不受杂质或无序的影响,因此非常稳定。拓扑绝缘体的研究对探索和发现新的量子现象,以

强磁场中心拓扑绝缘体量子线研究取得新进展

  3月28日,国际期刊《自然》子刊《科学报告》(Scientific Reports)发表中科院强磁场科学中心田明亮研究小组的最新科研成果:单晶碲化铋Bi2Te3纳米线中的一维弱反局域化(One-dimensional weak antilocalization in single-cry

拓扑晶态绝缘体碲化锡纳米线研究获得新进展

  拓扑绝缘体(Topological Insulator)是一种新奇的物质状态,它的体相是绝缘态而表面却是零带隙的金属态。尤其它的表面是受拓扑保护的导电态,不受非磁性杂质和晶体缺陷的干扰,因而在无损耗的量子计算和新奇的自旋电子器件等领域具有重要的应用价值。时间反演对称性保护的三维拓扑绝缘体如B

半导体所等在拓扑激子绝缘体相研究中取得进展

  上世纪60年代,诺贝尔奖获得者Mott提出激子绝缘相,Mott提出考虑库仑屏蔽效应,在半金属体系中电子-空穴配对而形成激子,可能会导致体系失稳,从而在半金属费米面处打开能隙,形成激子绝缘体状态。但迄今为止,实验上观测激子绝缘体相是一个尚未完全解决的关键科学问题。激子绝缘体相存在及其玻色-爱因斯坦

高压诱导拓扑绝缘体碲化铋超导性研究取得新进展

  最近,中科院物理研究所/北京凝聚态物理国家实验室(筹)超导国家重点实验室赵忠贤院士、孙力玲研究员及博士研究生张超等与周兴江研究员及博士生陈朝宇合作,利用自主研制的先进的低温-高压-磁场综合测量系统,对拓扑绝缘体Bi2Te3单晶进行了系统的研究。通过高压原位磁阻和交流磁化率的双重测

多阶铁电拓扑态研究获重要进展

近日,松山湖材料实验室大湾区显微科学与技术研究中心研究员马秀良团队同合作者,在自组装、高密度铁酸铋纳米结构中观测到多阶极性径向涡旋,并成功通过尺寸调控和外部电场实现不同拓扑态的转换和拓扑电荷控制。该发现为下一代高密度、多态非易失性存储器件的设计提供了全新思路。3月21日,相关成果发表于《自然-通讯》

化学所在二维共价有机框架的拓扑选择性合成研究中获进展

共价有机框架材料(covalent organic frameworks, COFs)是有机分子前驱体通过共价键形成的一类晶态多孔有机聚合物材料。这类材料具有独特的结构和优异的物理化学性质,在催化、传感、储能及光电器件等领域展现出巨大应用前景。因此,可控合成高质量的COFs具有重要意义。 中国科学院

化学所在二维共价有机框架的拓扑选择性合成研究中获进展

共价有机框架材料(covalent organic frameworks, COFs)是有机分子前驱体通过共价键形成的一类晶态多孔有机聚合物材料。这类材料具有独特的结构和优异的物理化学性质,在催化、传感、储能及光电器件等领域展现出巨大应用前景。因此,可控合成高质量的COFs具有重要意义。 中国科学院

物理所预言新型二维大能隙拓扑绝缘体

  众所周知,二维拓扑绝缘体的体内是绝缘的,而其边界是无能隙的金属导电态。且这种金属态中存在自旋-动量的锁定关系,相反自旋的电子向相反的方向运动,由于受到时间反演不变性的保护,它们之间的散射是禁止的,因此是自旋输运的理想“双向车道”高速公路,可用于新型低能耗高性能自旋电子器件。当前实验证实的二维拓扑

磁性拓扑绝缘体中的量子化反常霍尔效应研究取得进展

图1:量子霍尔效应(左)与量子化反常霍尔效应(右)的比较示意图  最近,中国科学院物理研究所/北京凝聚态物理国家实验室方忠、戴希研究组在无需外磁场的量子霍尔效应研究中取得重要进展。本工作发表在《科学》杂志上【R.Yu,et.al., Science, 3June2010

二维量子回流观测研究获进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512880.shtm

新型磁性二维材料研究获进展

  复旦大学教授张远波团队在二维磁性材料领域取得重大突破——发现一种新型的磁性二维材料Fe3GeTe2,为研究二维巡游磁性提供了一个全新的理想体系。今天,这一研究成果发表于《自然》。  伴随着单原子层的石墨材料——石墨烯被成功分离出来,二维材料的概念被正式提出来。近年来,磁性二维材料成为新的研究热点

物理所拓扑平带上的分数陈绝缘体理论研究取得进展

  分数量子霍尔效应是凝聚态物理中的重要研究领域,其新奇现象表现为新形态的量子流体和带分数电荷的激发态。传统的分数量子霍尔效应一般考虑强外磁场、低温和连续介质的环境。其中普林斯顿的崔琦因为这方面的研究和其他科学家获得诺贝尔奖,物理所就有以崔琦命名的实验室。  从2011年开始,人们发

中国科大揭示二维层状拓扑绝缘体材料的螺旋生长机理

  最近,中国科学技术大学微尺度物质科学国家实验室和化学与材料科学学院教授曾杰研究组在拓扑绝缘体二维层状纳米材料Bi2Se3的结构设计、合成与生长机理研究方面取得新进展。研究人员对Bi2Se3晶体的成核及生长进行了动力学调控,通过引入螺旋位错首次实现了二维层状材料的螺旋生长,将材料由分立的层状转变成

物理所在大能隙二维拓扑绝缘体ZrTe5中观测到拓扑边界态

  众所周知,二维拓扑绝缘体的体内是绝缘的,而其边界是无能隙的金属导电态。且这种金属态中存在自旋-动量的锁定关系,相反自旋的电子向相反的方向运动,由于受到时间反演不变性的保护,它们之间的散射是禁止的,因此是自旋输运的理想“双向车道”高速公路,可用于新型低能耗高性能自旋电子器件。当前实验已经确定具有量

分形子拓扑序和量子纠错研究获进展

  量子物态的研究是量子多体物理学的基石,并推动着现代技术的进步。当前,随着量子信息技术的蓬勃发展,量子物态的研究也有了新的潜在应用,例如,为量子计算机的设计提供有效的纠错容错方案。基于拓扑序(topological order)理论的拓扑编码(topological codes),由于高容错阈值和

陈刚教授团队拓扑保护边界态输运研究获进展

   近日,山西大学激光光谱研究所陈刚教授带领的团队与武汉大学刘正猷教授等合作,在拓扑边界态输运方面取得了重要进展。通过堆垛具有交错在位能的双层六角晶格,引入二聚型层间耦合,在国际上首次实验证实了基于铰链态的三维鲁棒输运。相关成果题为“3D Hinge Transport in Acoustic H