半导体所在自旋器件翻转机制研究中获进展

自旋电子器件被认为是后摩尔时代存储和逻辑器件最有前景的解决方案之一。自旋电子学的核心是磁性比特的电流翻转。然而,科学家无法定量甚至定性地剖析面内电流翻转垂直磁矩的物理现象。为了探讨面内电流翻转垂直磁矩的深层次物理机制,中国科学院半导体研究所朱礼军团队围绕直接参与磁矩翻转的自旋轨道矩效应和手性交换相互作用(DMI)开展研究。该团队运用重金属合金方法调控界面电子结构,观测到重金属/铁磁体系的界面DMI由界面自旋轨道耦合强度和界面轨道杂化共同决定的直接实验证据,并演示了轨道杂化不变时界面DMI效应随界面自旋轨道耦合强度的线性依赖关系。进一步,该团队在组分均匀的磁性单层膜内部发现了全新的体DMI,为研究磁性体系的手性相互作用、拓扑磁学和电流翻转等物理现象提供了新思路。近日,朱礼军团队通过大量电流翻转实验研究,提出了长程层内DMI的物理概念,解释了垂直磁矩的自旋轨道矩翻转和磁场翻转的对称性破缺、面内磁场直接翻转垂直磁矩等自旋物理问题。研究......阅读全文

自旋电子器件节能机制发现

  记者8月15日从中国科学院宁波材料技术与工程研究所获悉,该所柔性磁电功能材料与器件团队在新一代自旋电子器件研究领域取得关键突破。研究人员利用“非传统标度律”,将器件内部阻碍电子运动的“绊脚石”,转变成提升性能的“加油站”,为破解自旋电子器件面临的核心瓶颈提供了全新思路。相关研究论文在线发表于《自

自旋电子器件制造工艺获新突破

美国明尼苏达双城大学研究人员和国家标准与技术研究院(NIST)的联合团队开发了一种制造自旋电子器件的突破性工艺,该工艺有可能成为半导体芯片新的行业标准。半导体芯片是计算机、智能手机和许多其他电子产品的核心部件,新工艺将带来更快、更高效的自旋电子设备,并且使这些设备比以往更小。研究论文发表在最近的《先

自旋电子器件制造工艺获新突破

  美国明尼苏达双城大学研究人员和国家标准与技术研究院(NIST)的联合团队开发了一种制造自旋电子器件的突破性工艺,该工艺有可能成为半导体芯片新的行业标准。半导体芯片是计算机、智能手机和许多其他电子产品的核心部件,新工艺将带来更快、更高效的自旋电子设备,并且使这些设备比以往更小。研究论文发表在最近的

刘明院士团队:自旋神经形态器件研究新进展

  生物启发脉冲神经网络架构有望通过模拟人脑的高算力、高并行度、低功耗等特性,解决冯·诺依曼架构存储墙和能效瓶颈等问题。然而,面向构建脉冲神经网络的神经形态硬件的研究尚处于探索阶段,基于传统CMOS的神经形态芯片通常需要数十个晶体管和若干电容;基于新型存储器等新原理神经元器件亦需集成额外电容或复位操

我国在分子自旋光伏器件研究中取得重要进展

   近日,中国科学院国家纳米科学中心在分子自旋电子学研究方面取得重要进展,提出了全新的分子自旋光伏器件。  分子自旋光伏器件(MSP)是基于自旋阀器件结构和富勒烯(C60)分子材料构建的一种新型器件。该器件可在外部光、磁复合场作用下实现电子自旋和电荷输出信号的相互耦合,进而实现全新的器件功能,包括

半导体所在自旋器件翻转机制研究中获进展

自旋电子器件被认为是后摩尔时代存储和逻辑器件最有前景的解决方案之一。自旋电子学的核心是磁性比特的电流翻转。然而,科学家无法定量甚至定性地剖析面内电流翻转垂直磁矩的物理现象。为了探讨面内电流翻转垂直磁矩的深层次物理机制,中国科学院半导体研究所朱礼军团队围绕直接参与磁矩翻转的自旋轨道矩效应和手性交换相互

磁性电极无损转移制备高性能自旋电子器件获进展

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/517214.shtm自旋电子器件能高效利用电子自旋进行信息存储、传输和处理,目前已成功应用于电脑硬盘。为实现性能更优异、功能更加丰富的自旋电子器件,分子半导体材料凭借其远高于其他材料的自旋寿命而成为近年来

磁性电极无损转移制备高性能自旋电子器件获进展

  自旋电子器件能高效利用电子自旋进行信息存储、传输和处理,目前已成功应用于电脑硬盘。为实现性能更优异、功能更加丰富的自旋电子器件,分子半导体材料凭借其远高于其他材料的自旋寿命而成为近年来自旋电子学领域的研究热点。  国家纳米科学中心研究员孙向南课题组长期专注于分子自旋电子器件研究,目前已在分子半导

国家纳米中心等在分子自旋光伏器件研究中取得重要进展

  近日,中国科学院国家纳米科学中心研究员孙向南和西班牙巴斯克纳米科学中心教授Hueso等合作,在分子自旋电子学研究方面取得重要进展,提出并报道了全新的分子自旋光伏器件。相关研究成果于8月18日在《科学》(Science)杂志在线发表,并已申请国家发明ZL(申请号:201611011759.5)。 

全线性的电流诱导多态自旋轨道耦合磁性存储器件研究

  近期,中国科学院微电子研究所集成电路先导工艺研发中心研究员罗军课题组与中科院半导体研究所研究员王开友课题组合作,研制出全线性的电流诱导多态自旋轨道耦合(SOT)磁性存储器件,并实现了低能耗、可编辑的突触功能,为基于SOT-MRAM的低功耗存算一体逻辑和神经形态计算提供了一种新方法。  存算一体及

“自旋波电子学物理、材料与器件”香山科学会议在京召开

   2016年2月23~24日,香山科学会议第553次学术讨论会在北京香山饭店召开,此次会议以“自旋波电子学物理、材料与器件”为主题,潘建伟教授、沈保根研究员、李树深研究员和俞大鹏教授担任会议执行主席,来自物理学、信息科学与系统科学、电子信息工程等领域的60多位学者参加。   自旋波(磁子)是磁性

科学家构筑出具有带有栅极结构的聚合物自旋阀器件

作为自旋电子学的新兴分支之一,有机自旋电子学器件具有成本低、可溶液加工、重量轻、可化学裁剪等特点。有机自旋电子学器件将有机分子独特的优点与自旋调控相结合,带来了新材料、新架构和新机制,并为下一代高性能量子器件提供了新的研发路线。对自旋界面进行设计和优化是提高有机自旋阀器件性能的重要技术手段。现阶段,

科学家构筑出具有带有栅极结构的聚合物自旋阀器件

作为自旋电子学的新兴分支之一,有机自旋电子学器件具有成本低、可溶液加工、重量轻、可化学裁剪等特点。有机自旋电子学器件将有机分子独特的优点与自旋调控相结合,带来了新材料、新架构和新机制,并为下一代高性能量子器件提供了新的研发路线。对自旋界面进行设计和优化是提高有机自旋阀器件性能的重要技术手段。现阶段,

无外场单级电压控制SOTMTJ自旋逻辑器件研究中取得进展

自旋逻辑器件由于具有非易失性、低功耗以及易于小型化等优点,尤其是基于SOT的自旋逻辑器件具有高速、高耐久性,因而更加适合存内计算领域的应用,具有较大应用潜力。然而,目前报道的SOT逻辑器件大都是以双极性电信号的形式进行逻辑操作,需要额外的辅助电路对给定电信号进行转化从而完成逻辑操作(图1a),导致该

自旋轨道分裂是什么-简述自旋轨道理论

  在量子力学里,一个粒子因为自旋与轨道运动而产生的作用,称为自旋-轨道作用(英语:Spin–orbit interaction),也称作自旋-轨道效应或自旋-轨道耦合。最著名的例子是电子能级的位移。电子移动经过原子核的电场时,会产生电磁作用.电子的自旋与这电磁作用的耦合,形成了自旋-轨道作用。谱线

Kagome量子自旋液体分数化自旋激发获得新思路

  量子自旋液体是一种新的物质形态,可用拓扑序的长程多体纠缠来描述。量子自旋液体备受关注,这是由于其在高温超导机制和量子计算中的广阔应用,更源于其背后深刻的物理机制。自旋1/2的Kagome晶格反铁磁体系具有强烈的几何阻挫和量子涨落,是可能存在量子自旋液体的典型模型。ZnCu3(OH)6Cl2是第一

核磁共振中的自旋偶合与自旋分裂规律及特征

  该文主要盘绕核磁共振波谱仪做的进一步剖析引见。   1.自旋巧合与自旋团结的根本概念   在有机化合物分子中,每一个原子核的四周除了电子以外,还存在着其他带正电荷的原子核,其中的自旋量子数不等于零的原子核互相间存在着干扰作用,这种干扰作用不影响磁性核的化学位移,但对核磁共振图谱的外形有着显著

质子自旋耦合的原因

在外磁场的作用下,质子是会自旋的,自旋的质子会产生一个小的磁矩,通过成键价电子的传递,对邻近的质子产生影响。质子的自旋有两种取向,假如外界磁场感应强度为自旋时与外磁场取顺向排列的质子,使受它作用的邻近质子感受到的总磁感应 强度为B0+B',自旋时与外磁场取逆向排列的质子,使邻近的质子感受到的

南开大学研究团队提出自旋矢势与自旋AB效应

  阿哈罗诺夫-波姆(Aharonov-Bohm,简称AB)效应是一种量子力学现象,它深刻反映了经典理论和量子理论之间的联系。南开大学陈省身数学所理论物理研究室教授陈景灵课题组在国际上首次提出电子的“自旋矢势”假设,并以量子力学传统方式提出一个关于“自旋AB效应”的思想实验,可以用来检验自旋矢势是否

南开大学研究团队提出自旋矢势与自旋AB效应

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511737.shtm阿哈罗诺夫-波姆(Aharonov-Bohm,简称AB)效应是一种量子力学现象,它深刻反映了经典理论和量子理论之间的联系。南开大学陈省身数学所理论物理研究室教授陈景灵课题组在国际上首

量子自旋液体新证据发现

一个由瑞士、美国、法国等多国科学家组成的国际团队宣布,他们在锡酸铈材料发现了量子自旋液体的新证据。这一发现有望促进基础物理学和量子计算领域取得新突破。相关论文发表于《自然·物理学》杂志。用中子对自旋液体进行激发(示意图)。图片来源:科学消息网量子力学理论认为,电子拥有“自旋”的性质,这意味着其行为类

自旋的偶合常数的概念

自旋偶合的量度称为自旋的偶合常数(coupling constant),用符号J表示,J值的大小表示了偶合作用的强弱J的左上方常标以数字,它表示两个偶合核之间相隔键的数目,J的右下方则标以其它信息。就其本质来看,偶合常数是质子自旋裂分时的两个核磁共振能之差,它可以通过共振吸收的位置差别来体现,这在图

XPS图谱之自旋轨道分裂

由于电子的轨道运动和自旋运动发生耦合后使轨道能级发生分裂。对于l>0的内壳层来说,用内量子数j(j=|l±ms|)表示自旋轨道分裂。即若l=0 则j=1/2;若l=1则j=1/2或3/2。除s亚壳层不发生分裂外,其余亚壳层都将分裂成两个峰。

让稀薄的氦分子自旋

氦发射的光谱。激光脉冲可暴露氦原子对的量子特性。图片来源:Dept. of Physics, Imperial College/SPL 氦原子很“冷淡”,很少彼此或与其他元素的原子相互作用。但氦原子冷却到接近绝对零度时,可以被诱导形成具有特定量子特性的脆弱对或二聚体。用激光轰击氦“二聚体”

自旋标记法的方法介绍

自旋标记 (spin label), 很多物质的分子不表现电子自旋共振(ESR),但对这些分子,人工地使之与自由基(free radical)结合从而得以用ESR法来研究,获得独特的ESR信息,这就是自旋标记法。

Nature子刊:自旋极化STM等对量子材料中自旋流的原位探测

  近日,北京大学量子材料科学中心韩伟研究员、谢心澄院士和日本理化学研究所Sadamichi Maekawa教授受邀在国际著名刊物 Nature Materials (《自然-材料》)撰写综述文章,介绍“自旋流-新颖量子材料的灵敏探针”这一新兴领域的前沿进展。  自旋电子学起源于巨磁阻效应的发现,在

全电学操控的非易失性多功能可编程自旋逻辑研究

  基于自旋的数据存储和运算技术是解决大数据时代计算能力不足和存储空间不够的优选方案之一。而磁随机存储器和自旋逻辑器件分别是自旋电子学可以明确针对存储和逻辑运算两方面挑战难题而提出的对应关键技术。它们两者共同的物理和器件基础是:(1)高磁电阻比值的磁性隧道结材料和(2)电流驱动的磁矩翻转机理。后者还

实验室分析仪器自旋偶合与自旋分裂的基本概念

在有机化合物分子中,每一个原子核的周围除了电子以外,还存在着其他带正电荷的原子核,其中的自旋量子数不等于零的原子核相互间存在着干扰作用,这种干扰作用不影响磁性核的化学位移,但对核磁共振图谱的形状有着显著的影响。核磁矩自旋间的相互干扰作用叫作自旋偶合,由自旋偶合引起的谱线增多的现象叫作自旋分裂。

设备原理篇核磁共振中的自旋偶合与自旋分裂规律及特征

  该文主要盘绕核磁共振波谱仪做的进一步剖析引见。   1.自旋巧合与自旋团结的根本概念   在有机化合物分子中,每一个原子核的四周除了电子以外,还存在着其他带正电荷的原子核,其中的自旋量子数不等于零的原子核互相间存在着干扰作用,这种干扰作用不影响磁性核的化学位移,但对核磁共振图谱的外形有着显著

元器件展会|2024上海国际电声器件展览会「上海元器件展」

展会概况展会名称:2024中国(上海)国际电子展览会展会时间:2024年11月18-20日 论坛时间:2024年11月18-19日 展会地点:上海新国际博览中心展会规模:50,000平方米、800家展商、90,000名专业观众  展会介绍:       电子产业是电子信息产业的基础支撑,中国电子元器