异淀粉酶在饲料工业中的应用价值研究
在动物体内,营养物质的消化和吸收过程中,酶起着非常重要的促进作用。一般情况下,动物自身能分泌消化酶——蛋白酶、脂肪酶和淀粉酶等,进入消化道,对其摄入的蛋白、脂肪和淀粉等营养物质进行降解,成为能被吸收的小分子,如:氨基酸、脂肪酸、甘油和葡萄糖等。饲料中不仅有营养物,还有大量的结构性多糖,如:果胶、纤维素、甘露聚糖、木聚糖及抗营养物植酸等,而动物(尤其是反刍动物)自身不能产生或分泌降解这些结构性多糖及抗营养物的酶(果胶酶、纤维素酶、甘露聚糖酶、木聚糖酶和植酸酶),因而为了降解这些结构性抗营养物,显著提高饲料的利用率,添加于饲料中的酶,一般是消化酶(蛋白酶、脂肪酶和淀粉酶)和非消化酶制成的复合酶制剂。饲用酶制剂的研究与应用已有十多年的历史,大量研究表明:饲用酶制剂是一种高效、无毒且无残留的绿色饲料添加剂。饲用酶制剂中非消化酶和消化酶的添加,都能不同程度地降低食糜黏稠度,促进营养物质的消化和吸收,提高饲料利用率。非消化酶的添加可破坏植物......阅读全文
异淀粉酶来源介绍
异淀粉酶淀粉-1,6-葡萄糖苷酶,编号E.C.3.2.1.33动物、植物、微生物都产生异淀粉酶。来源不同,名称也不同,如:脱支酶、Q酶、R酶、普鲁蓝酶、茁霉多糖酶等。水解支链淀粉或糖原的α-1,6-糖苷键,生成长短不一的直链淀粉(糊精)。主要由微生物发酵生产,菌种有酵母、细菌、放线菌。
淀粉酶和异淀粉酶的相关介绍
淀粉酶 葡萄糖淀粉酶,糖化酶,编号E.C.3.2.1.3 γ-淀粉酶(γ-amylase)是外切酶,从淀粉分子非还原端依次切割α(1→4)链糖苷键和α(1→6)链糖苷键,逐个切下葡萄糖残基,与β-淀粉酶类似,水解产生的游离半缩醛羟基发生转位作用,释放β-葡萄糖。无论作用于直链淀粉还是支链淀粉
简述异淀粉酶的应用
主要表现在对于各种支链多聚糖以及茁霉多糖的分解能力上。到 20 世纪 70 年代 ,异淀粉酶的应用已扩展到淀粉糖浆、啤酒和酒精生产等多个淀粉深加工领域,并逐步从实验室阶段走向工业化规模。在淀粉加工中 ,异淀粉酶和糖化酶协同作用时,可以加速糖化过程,提高糖化率;和β -淀粉酶联合作用时,则可以大大
异淀粉酶的主要应用
主要表现在对于各种支链多聚糖以及茁霉多糖的分解能力上。到 20 世纪 70 年代 ,异淀粉酶的应用已扩展到淀粉糖浆、啤酒和酒精生产等多个淀粉深加工领域,并逐步从实验室阶段走向工业化规模。在淀粉加工中 ,异淀粉酶和糖化酶协同作用时,可以加速糖化过程,提高糖化率;和β -淀粉酶联合作用时,则可以大大提高
异淀粉酶的应用介绍
主要表现在对于各种支链多聚糖以及茁霉多糖的分解能力上。到 20 世纪 70 年代 ,异淀粉酶的应用已扩展到淀粉糖浆、啤酒和酒精生产等多个淀粉深加工领域,并逐步从实验室阶段走向工业化规模。在淀粉加工中 ,异淀粉酶和糖化酶协同作用时,可以加速糖化过程,提高糖化率;和β -淀粉酶联合作用时,则可以大大提高
异淀粉酶的基本信息
只水解糖原或支链淀粉分枝点的-1,6糖苷链,切下整个侧枝,形成长短不一的直链淀粉。异淀粉酶对底物的作用特点,可以从其对糯米淀粉作用后产物的特性得到证实。当异淀粉酶作用于糯米淀粉时,随着解支作用的进行,碘色反应由红变蓝,还原力增加,在丁醇中发生沉淀,淀粉溶液变为易于老化,出现了直链淀粉的特征。异淀粉酶
异淀粉酶的原理及发现
其实早在1940年由酵母抽提物中即发现了异淀粉酶,但对异淀粉酶的酶学特性认识却经历了一段不算太短的时间.\表淀粉酶分类常用名作用的键主要生成物来辑0一淀粉酶1.4葡萄糖动物(睡液.胰脏)期精细曹,霉菌麦芽糖植糟(麦芽)淀粉酶1.4麦芽糖大豆.山芋,鲴膏糖化蘸1.41.6葡萄糖动物.霉曹.细曹.群母异
异淀粉酶的基本原理
其实早在1940年由酵母抽提物中即发现了异淀粉酶,但对异淀粉酶的酶学特性认识却经历了一段不算太短的时间.\表淀粉酶分类常用名作用的键主要生成物来辑0一淀粉酶1.4葡萄糖动物(睡液.胰脏)期精细曹,霉菌麦芽糖植糟(麦芽)淀粉酶1.4麦芽糖大豆.山芋,鲴膏糖化蘸1.41.6葡萄糖动物.霉曹.细曹.群母异
简述异淀粉酶的基本原理
其实早在1940年由酵母抽提物中即发现了异淀粉酶,但对异淀粉酶的酶学特性认识却经历了一段不算太短的时间.\表淀粉酶分类常用名作用的键主要生成物来辑0一淀粉酶1.4葡萄糖动物(睡液.胰脏)期精细曹,霉菌麦芽糖植糟(麦芽)淀粉酶1.4麦芽糖大豆.山芋,鲴膏糖化蘸1.41.6葡萄糖动物.霉曹.细曹.群
异淀粉酶的基本信息和特性
只水解糖原或支链淀粉分枝点的-1,6糖苷链,切下整个侧枝,形成长短不一的直链淀粉。异淀粉酶对底物的作用特点,可以从其对糯米淀粉作用后产物的特性得到证实。当异淀粉酶作用于糯米淀粉时,随着解支作用的进行,碘色反应由红变蓝,还原力增加,在丁醇中发生沉淀,淀粉溶液变为易于老化,出现了直链淀粉的特征。异淀粉酶
关于异淀粉酶的基本信息介绍
只水解糖原或支链淀粉分枝点的-1,6糖苷链,切下整个侧枝,形成长短不一的直链淀粉。异淀粉酶对底物的作用特点,可以从其对糯米淀粉作用后产物的特性得到证实。当异淀粉酶作用于糯米淀粉时,随着解支作用的进行,碘色反应由红变蓝,还原力增加,在丁醇中发生沉淀,淀粉溶液变为易于老化,出现了直链淀粉的特征。异淀
异淀粉酶在饲料工业中的应用前景
在动物体内,营养物质的消化和吸收过程中,酶起着非常重要的促进作用。一般情况下,动物自身能分泌消化酶——蛋白酶、脂肪酶和淀粉酶等,进入消化道,对其摄入的蛋白、脂肪和淀粉等营养物质进行降解,成为能被吸收的小分子,如:氨基酸、脂肪酸、甘油和葡萄糖等。饲料中不仅有营养物,还有大量的结构性多糖,如:果胶、纤维
异淀粉酶在饲料工业中的应用价值研究
在动物体内,营养物质的消化和吸收过程中,酶起着非常重要的促进作用。一般情况下,动物自身能分泌消化酶——蛋白酶、脂肪酶和淀粉酶等,进入消化道,对其摄入的蛋白、脂肪和淀粉等营养物质进行降解,成为能被吸收的小分子,如:氨基酸、脂肪酸、甘油和葡萄糖等。饲料中不仅有营养物,还有大量的结构性多糖,如:果胶、纤维
α淀粉酶和β淀粉酶之间的功能差异
α-淀粉酶: ✤ 是一种内切葡糖苷酶,随机作用于淀粉链内部的α-1,4糖苷键。 ✤ 降解直链淀粉产物是葡萄糖、麦芽糖、麦芽三糖。 ✤ 降解支链淀粉产物是葡萄糖、麦芽糖、麦芽三糖和α-极限糊精。 β-淀粉酶: ✤ 是一种外切葡糖苷酶,从淀粉的非还原端切开α-1,4糖苷键,逐个除去二糖单位,原
α淀粉酶和β淀粉酶的功能差异分析
α-淀粉酶:是一种内切葡糖苷酶,随机作用于淀粉链内部的α-1,4糖苷键.降解直链淀粉产物是葡萄糖,麦芽糖,麦芽三糖.降解支链淀粉产物是葡萄糖,麦芽糖,麦芽三糖和α-极限糊精. β-淀粉酶:是一种外切葡糖苷酶,从淀粉的非还原端切开α-1,4糖苷键,逐个除去二糖单位,原来的α连接被转型,产物为β-麦芽糖
异源异倍体的概念
中文名称异源异倍体英文名称alloheteroploid定 义染色体来自不同染色体组的异倍体。应用学科遗传学(一级学科),细胞遗传学(二级学科)
异源异倍性的概念
中文名称异源异倍性英文名称alloheteroploidy定 义由非同源染色体形成的异倍性。应用学科细胞生物学(一级学科),细胞遗传(二级学科)
淀粉酶测定原理
把病人的标本(含淀粉酶)和底物的多糖一起进行反应,测定反应后的剩余底物或生成的产物来计算淀粉酶的活性。 底物一般含有4~7葡萄糖(戊糖、庚糖等),并连有发色基团如β-2-氯-4-硝基酚-G7等。经葡萄糖苷酶催化水解为黄色的对硝基酚和葡萄糖。 对硝基苯酚的生成量在一定范围内与AMY活性成正比,
淀粉酶的用途
发酵α-和β-淀粉酶在酿造由淀粉衍生的糖制成的啤酒和白酒中很重要。在发酵过程中,酵母摄取糖分并排出乙醇。在啤酒和一些白酒中,发酵开始时存在的糖分是通过“捣碎”谷物或其他淀粉源(如土豆)产生的。在传统的啤酒酿造中,大麦麦芽与热水混合制成“麦芽浆””,将其保持在给定的温度,以使麦芽谷物中的淀粉酶将大麦的
β淀粉酶的性质
能将直链淀粉分解成麦芽糖的淀粉酶。广布于植物界如未发芽的大麦、小麦、燕麦、大豆、甘薯等中。可耐酸。将麦芽汁调节pH值为3.6,在0℃下可使α-淀粉酶失去活力,而余下β-淀粉酶。β-淀粉酶的唯一产物是麦芽糖,不是葡萄糖。
β淀粉酶来源介绍
与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于像直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止
β淀粉酶的来源
β-淀粉酶主要存在于高等植物中,特别是谷物中,如大麦、小麦等,在甘薯、大豆中也有存在,在动物体内不存在。目前工业上使用的β-淀粉酶主要包括植物β-淀粉酶和微生物β-淀粉酶。由于植物来源的β-淀粉酶生产成本较高,人们也开始重视微生物来源的β-淀粉酶,从20世纪60年代开始,已先后发现了来源于巨大芽孢杆
什么是淀粉酶?
淀粉酶是一种催化淀粉(拉丁淀粉)水解成糖的酶。淀粉酶存在于人类和其他一些哺乳动物的唾液中,在那里它开始了消化的化学过程。含有大量淀粉但糖分少的食物,例如米饭和土豆,在咀嚼时可能会获得微甜的味道,因为淀粉酶会将其中的一些淀粉降解成糖。这胰腺和唾液腺制造淀粉酶(α淀粉酶),将膳食淀粉水解成二糖和三糖,再
α淀粉酶的性质
在高浓度淀粉保护下α-淀粉酶的耐热性很强,在适量的钙盐和食盐存在下,pH值为5.3~7.0时,温度提高到93~95℃仍能保持足够高的活性。为便于保存,常加入适量的碳酸钙等作为抗结剂防止结块。α-淀粉酶可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和单糖,酶作用后可使糊化淀粉的黏度迅速降
γ淀粉酶来源介绍
γ-淀粉酶葡萄糖淀粉酶,糖化酶,编号E.C.3.2.1.3γ-淀粉酶(γ-amylase)是外切酶,从淀粉分子非还原端依次切割α(1→4)链糖苷键和α(1→6)链糖苷键,逐个切下葡萄糖残基,与β-淀粉酶类似,水解产生的游离半缩醛羟基发生转位作用,释放β-葡萄糖。无论作用于直链淀粉还是支链淀粉,最终产
β淀粉酶的性质
β-淀粉酶活性中心含有巯基(-SH),因此,一些氧化剂、重金属离子以及巯基试剂均可使其失活,而还原性的谷胱甘肽、半胱氨酸对其有保护作用。β-淀粉酶和α-淀粉酶的最适pH值范围基本相同,一般均在5.0~6.5左右,但β-淀粉酶的稳定性明显低于α-淀粉酶,70℃以上一般均会失活。不同来源的β-淀粉酶稳定
淀粉酶测定方法
植物中的淀粉酶能将贮藏的淀粉水解成麦芽糖。淀粉酶几乎存在于所有植物中,其中以禾谷类种子的淀粉酶活性最强。植物中有α–淀粉酶和β–淀粉酶,其活性因植物的生长发育时期不同而有所变化。通过本实验掌握淀粉酶的提取和测定方法。原理:α–淀粉酶和β–淀粉酶,各有其一定的特性,如β–淀粉酶不耐热,在高温下易钝化,
α淀粉酶的应用
α-淀粉酶主要用于水解淀粉制造饴糖、葡萄糖和糖浆等,以及生产糊精、啤酒、黄酒、酒精、酱油、醋、果汁和味精等。还用于面包的生产,以改良面团,如降低面团黏度、加速发酵进程,增加含糖量和缓和面包老化等。在婴幼儿食品中用于谷类原料预处理。此外,还用于蔬菜加工中。用量:以枯草杆菌α-淀粉酶(6000IU/g)
α淀粉酶分布介绍
于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子和激活因子,也有部分淀粉酶为非Ca2+依赖型。淀粉酶既作用于直链淀粉,亦作用于支链淀粉,无差别地随机切断糖链内部的α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的
β淀粉酶的性质
β-淀粉酶活性中心含有巯基(-SH),因此,一些氧化剂、重金属离子以及巯基试剂均可使其失活,而还原性的谷胱甘肽、半胱氨酸对其有保护作用。β-淀粉酶和α-淀粉酶的最适pH值范围基本相同,一般均在5.0~6.5左右,但β-淀粉酶的稳定性明显低于α-淀粉酶,70℃以上一般均会失活。不同来源的β-淀粉酶稳定