氮化锆的性质
......阅读全文
微波烧结炉的应用领域
应用领域 1.陶瓷材料: 采用微波高温炉烧结各种白瓷、炻瓷、薄胎瓷、骨灰瓷,比传统燃气烧结炉或燃油烧结炉降低一半以上的烧成成本,提高产品合格率。 利用微波高温炉烧结大红瓷器、青花瓷器,可大幅度提高成品率,缩短烧成时间,节约能耗。 微波高温炉可烧结各种氧化物陶瓷材料、氮化物陶瓷材料、碳化物
氮化铟制备方法
步骤S1、提供一衬底,在所述衬底上沉积一层介电薄膜;步骤S2、对所述介电薄膜进行图案化,得到均匀排列的多个介电凸台;步骤S3、提供一反应室,将所述形成有介电凸台的衬底放入反应室中并将所述反应室抽真空;步骤S4、在所述介电凸台及衬底上Chemicalbook生长缓冲层,在介电凸台的阻挡下,所述缓冲层的
氮化铬生产方法
生产方法1.将低碳铬铁在真空加热炉于1150℃氮化得到粗氮化铬铁,再经硫酸处理,除去铁杂质。经过滤、水洗、干燥,即得氮化铬。也可由氨和卤化铬反应制得。2.将高纯度电解铬粉末,在150mmHg(1mmHg=133.322Pa)柱的氮气流中,于1060℃下加热160h之后,排出氮气并进行急冷,则制得Cr
氮化铟-用途简介
氮化铟(InN)发展成为新型的半导体功能材料,在所有Ⅲ族氮化物半导体材料中,氮化铟具有良好的稳态和瞬态电学传输特性,它有最大的电子迁移率、最大的峰值速率、最大的饱和电子漂移速率、最大的尖峰速率和有最小的带隙、最小的电子有效质量等优异的性质,这些使Chemicalbook得氮化铟相对于氮化铝(AlN)
氢化锆的理化特性
根据所用氢气的纯度,产品组成为ZrH2-xo,在ZrH1.6~ZrH2间,氢化锆共有两种形态,室温型为斜萤石型正方晶体,高温型为萤石型立方晶体。因为氢在晶格中占有一定的位置,不仅形成间充型化合物,氢化锆还有δ型(面心立方晶体,组成范围为ZrH1.44~ZrH1.65)及γ型(组成范围ZrH0.05~
氧化锆氧分析仪器氧化锆探头相关介绍
氧化锆探头。氧化锆探头是氧分析器的检测部件,其核心就是氧化锆固体电解质氧浓差电池。它的作用是将被测气体的氧含量转换成氧浓差电势。 要使氧化锆探头输出的浓差电势信号和待测气体的氧浓度成单值函数关系,必须使探头的工作温度保持恒定。现常用的方法有两种;一种是在探头内部设置温度控制系统,使探头置于恒定
新型硅锆多孔涂层提升氧化锆粘接性能的研究
浙江大学苏智伟、傅柏平等: 中文摘要: 目的:采用浸渍提拉法在氧化锆表面形成多孔硅锆涂层,评估表面特征及其对氧化锆-树脂粘接强度的影响。 创新点:将纳米氧化硅和氧化锆粉末制备成稳定的混合悬浮液,采用浸渍提拉法在氧化锆表面形成均匀、多孔、厚度可控的硅锆涂层,提升氧化锆粘接性能。 方法:在本
氮化铟的应用特点
氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟(InN)是氮化物半导体材料的一种。常温常压下的稳定相是六方纤锌矿结构,是一种直接带隙半导体材料。
氮化铝的应用历史
氮化铝于1877年首次合成。至1980年代,因氮化铝是一种陶瓷绝缘体(聚晶体物料为70-210W‧m−1‧K−1,而单晶体更可高达275W‧m−1‧K−1),使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。氮