化学风化作用能为变暖地球降温

最近英国科学家通过对9300万年前化学风化作用的研究发现,二氧化碳排放增多造成全球气候变暖后,随着碳排放的减少,在化学风化作用下,气候会逐渐开始变冷并恢复到原来的水平,这一时间远比科学家们原来预想的要短,但也需要30万年之久。 大气中的二氧化碳会溶解在雨水中,与岩石中的某些化学成分发生反应,进而改变岩石的物理状态和化学成分,这一过程称为化学风化过程。通过这一过程,大气中的碳会回流到海洋,而其中一大部分会被一些海洋生物“捕获”,重新融入到地表和生物圈中。 在9300万年前的白垩纪,地球的某一区域(马达加斯加、所罗门群岛或加勒比海三个地区之一)经历了一段长达万年的大规模火山喷发,期间每年向大气中排放的二氧化碳高达100亿吨,使得地球气候急剧变暖。这一事件被称作“第二次海洋缺氧事件”。这一时期,地球赤道附近的海水温度上升了3摄氏度,使得近53%的海洋物种灭绝。 英国牛津大学的科学家对英国南部比奇角等地的岩石进行了......阅读全文

热带山脉变身地球恒温器-或为造成冰川时代的原因

在一些潮湿的热带山区,二氧化碳会被捕获。图片来源:ROBERT HARDING  讨厌寒冷吗?谴责印度尼西亚吧。考虑到该国2.7亿人口、森林砍伐以及频繁的二氧化碳排放对全球变暖的贡献,这听起来可能有些奇怪。但在更长的时间内,该国正在从大气中吸收二氧化碳。  印度尼西亚和邻近的巴布亚新几内亚的许多山脉

柠檬酸的理化性质

理化性质从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质。柠檬酸是一种较强的有机酸,有3个H+可以电离。 在室温下,柠檬酸为白色结晶性粉末,无臭、味极酸 [2]  ,密度1.542g/cm3,熔点153-159℃,175℃以上分解释放出水及二氧化碳。柠檬酸易溶于水,20

二氧化碳变身高附加值化学品

  全球温室气体二氧化碳排放量增加引起空气污染、气候变暖诸多环境问题。若能以二氧化碳为原料,将其直接转化为高附加值的化学品,不仅可实现碳减排,还能减轻对煤、石油等传统资源的依赖。日前,中科院大连化物所科研人员在二氧化碳催化转化领域取得新进展。他们通过设计一种多助剂共存的铁基催化剂,实现了二氧化碳加氢

大连化物所变二氧化碳为高值化学品

  为二氧化碳加点“料”,让这个使全球气候变暖的“罪魁祸首”变成高附加值的化学品。这是中科院大连化物所的科学家最近完成的“戏法”。记者5月14日获悉,大连化物所孙剑和葛庆杰研究团队通过设计一种多助剂共存的铁基催化剂,实现了二氧化碳加氢高选择性制取线性α—烯烃。这项工作为利用二氧化碳制取高值化学品的研

为二氧化碳电化学还原反应“提速”的关键

  日前,天津大学新能源化工实验室与丹麦技术大学物理系合作,在二氧化碳资源化利用领域取得突破,揭示了二氧化碳电化学还原反应的控速步骤,在该研究方向提出了全新的机理认识,相关成果发表于《自然-通讯》。  大气中二氧化碳等温室气体含量的逐年增加造成愈发严重的全球气候变暖。利用太阳能等可再生能源产生的电能

临床化学检查方法介绍二氧化碳结合力介绍

二氧化碳结合力介绍:  二氧化碳结合力是在特定温度和压力下测定溶解至血浆或血清中二氧化碳的量,也就是指在隔绝空气的条件下,将病人血浆用正常人的肺泡气(pCO2均为5.32kpa)平衡过,所测得血浆内CO2的含量,减去已知的溶于血浆中的CO2部分所得的值,反映体内的碱贮备量,主要用来了解血中碳酸氢钠的

研究揭示黄河源头风化和CO2消耗过程的季节变化

  地质时间尺度上,硅酸盐岩的风化通过吸收大气CO2的方式进行,在调控全球气候方面起到关键性作用,从而提供了人类赖以生存的宜居地球环境。然而,影响硅酸盐风化速率的控制机制(气候驱动或构造控制?)是地球科学前沿争论的焦点之一。黄河流经了具有显著差异的地形地貌、岩性、气候和植被等区域,包括源头的青藏高原

耦合水生碳泵效应的碳酸盐风化碳汇模拟研究获进展

  碳酸盐风化能否构成(稳定)碳汇取决于风化产生的溶解无机碳(DIC)能否被水生光合生物利用及其利用程度,即水生碳泵效应。另一方面,土地利用变化如何影响生物碳泵效应仍是未解之谜,因此,碳酸盐风化碳汇问题不仅存在争议,也缺乏系统深入的研究。  中国科学院地球化学研究所环境地球化学国家重点实验室研究员刘

冰期间冰期流域侵蚀风化与印度夏季风同步变化新发现

  地表岩石/矿物风化被认为是维持地球宜居性和不同尺度碳循环平衡的重要因子,是系统地球科学和地表地球动力学领域研究的基础理论前沿之一。但是,岩石风化与高原隆升、气候变化之间的内在联系存在较多争论,特别是季风盛行的青藏高原周边。其中一个主要原因是相关的侵蚀和风化记录主要来自于物源和气候信息混合的边缘海

成都山地所在成土过程中磷风化速率与机制方面取得进展

  磷(P)是植物生长必需的主要养分元素,对维护生态系统稳定具有不可替代的作用。与碳和氮主要来自大气不同,自然生态系统中P的最终、唯一来源为含P矿物的风化。然而,先前的研究多侧重于研究P生物有效性和形态转化,缺乏对P风化速率的定量研究。中国科学院成都山地灾害与环境研究所研究员吴艳宏带领“山地生物地球

研究揭示大陆风化作用增强诱发泥盆纪末生态危机

  中、晚泥盆世,随着森林系统和种子植物的出现,复杂陆地生态系统得以建立,形成了地球生命演化史中继生命起源、寒武纪海洋生物大爆发之后的一次重要生物演化事件,并对地球表层系统产生重要影响。  陆地植物通过增强岩石与矿物的物理与化学风化,增加有机碳储库和促进水循环,逐渐改变大陆地形地貌、地表元素循环过程

化学试剂的变质与防护

  前言  化学试剂在贮存过程中是否会发生变质,取决于内外两个方面的因素,内因是试剂本身化学结构所决定的理化性质;外因则是试剂所处的环境条件。   要做到合理保管,一要了解试剂结构与性质间关系,二要创造适应试剂贮存的外部环境。   1引发和促使化学试剂变质的原因   环境主要是指贮存的温度、光照和介

血液的化学检验项目二氧化碳总量(TCO2)介绍

二氧化碳总量(TCO2)介绍:  二氧化碳总量是指血浆中所有以各种形式存在的二氧化碳(CO2)的总含量,其中大部分(95%)是结合形式的。TCO2测定可在血气酸碱分析仪间接求得,简便可靠。以往传统的方法是根据Vansiyke设计的量积和量压法,必要时亦可采用,分析结果也是可靠的。现也有光度法,Con

美国新研究发现岩石也能释放氮

  科学界普遍认为地球上植物所吸收的氮都来自大气。但一项美国最新研究指出,自然生态系统中高达26%的氮来源于岩石,其余的则来自大气。图片来源于网络  过去的几十年中,科学家们已经认识到,土壤和植物中氮的积累量比大气所能提供的要多,但一直没有人能确定这些氮的来源。  美国加利福尼亚大学戴维斯分校研究人

日本理学X射线荧光光谱仪对风化堆积岩的元素分析方法

  矿石开采及矿石判定需要的准确的进行分析测定广州仪德科学代理的日本理学X射线荧光光谱仪可以轻松解决,下面通过实际案例分享测定方法,为矿产行业提供宝贵经验。   为对局部变色堆积岩的变色原因进行无损检查,使用X射线荧光分析仪作CCD定点分析及元素分布分析。CCD定点分析和元素分布分析是根据仪器

日本理学X射线荧光光谱仪对风化堆积岩的元素分析方法

  矿石开采及矿石判定需要的准确的进行分析测定广州仪德科学代理的日本理学X射线荧光光谱仪可以轻松解决,下面通过实际案例分享测定方法,为矿产行业提供宝贵经验。   为对局部变色堆积岩的变色原因进行无损检查,使用X射线荧光分析仪作CCD定点分析及元素分布分析。CCD定点分析和元素分布分析是根据仪器

嫦娥五号着陆点月壤矿物组成和太空风化作用

  我国首次月球采样返回任务嫦娥五号(CE-5)着陆于月球风暴洋北部年轻的克里普(KREEP)地体,成功带回1.73kg月壤。前人利用轨道遥感数据对CE-5着陆区的地形地貌和物质成分进行大量研究,近期一系列样品分析推进了对于月球年代学、月球晚期火山活动和岩浆演化机制的认识。与大尺度的遥感观察和精细的

关于柠檬酸的理化性质介绍

  柠檬酸(CA),又名枸橼酸,分子式为C₆H₈O₇,是一种重要的有机酸,为无色晶体,无臭,有很强的酸味,易溶于水,是酸度调节剂(GB2760—2014)和食品添加剂。  从结构上讲柠檬酸是一种三羧酸类化合物,并因此而与其他羧酸有相似的物理和化学性质。柠檬酸是一种较强的有机酸,有3个H+可以电离。 

二氧化碳合成重要化学品:开辟CCUS高效利用新途径

  二氧化碳捕集、利用与封存(CCUS)技术,是煤炭实现低碳排放的主要途径之一,是我国践行低碳发展战略的重要技术选择。CO2的高值化利用,不仅可减少碳排量、缓解温室效应,还能产生显著的社会经济价值。由于CO2分子存在不易活化、反应路径复杂、产品选择性低等问题,其活化转化已成为国际公认的科学难题。  

临床化学检查方法介绍脑脊液氧分压和二氧化碳分压

脑脊液氧分压(PO2)和二氧化碳分压(PCO2)介绍:  脑脊液氧分压(PO2)指脑脊液中物理溶解氧的强力,其反映大脑缺氧的程度。二氧化碳分压(PCO2)又称二氧化碳强力,指脑脊液溶解二氧化碳所产生的压力。脑脊液氧分压(PO2)和二氧化碳分压(PCO2)正常值:  PO2: 5.3-5.9kPa (

大连化物所实现串联催化二氧化碳电化学还原制甲烷

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室研究员汪国雄与中科院院士包信和团队,在二氧化碳电催化还原研究中取得进展。该研究实现非铜基催化剂上串联催化二氧化碳电化学还原制甲烷,为二氧化碳电催化还原制碳氢化合物提供新策略。  二氧化碳电催化还原利用清洁电能,将二氧化碳和水转化为化学品和燃

我所实现串联催化二氧化碳电化学还原制甲烷

  近日,我所催化基础国家重点实验室汪国雄研究员与包信和院士团队在二氧化碳电催化还原研究方面取得新进展。该团队实现了非铜基催化剂上串联催化二氧化碳电化学还原制甲烷,为二氧化碳电催化还原制碳氢化合物提供了新策略。  二氧化碳电催化还原利用清洁电能将二氧化碳和水转化为化学品和燃料,被认为是一种能同时实现

古新世始新世极热事件中碳循环、气候变化与风化强耦合

准确而定量地描述碳排放、气候变化与地质碳汇之间的互馈关系,是地球科学领域的前沿问题,也是制定碳中和战略目标的关键科学基础。然而,目前关于气候变化背景下的地球系统碳循环过程与机理的认识仍存在较大的不确定性。例如,未来大气CO2浓度的急剧变化是否会影响地质碳汇的潜力?大陆硅酸盐风化如何响应快速碳排放? 

我国在二叠纪末生物大灭绝研究中取得重要进展

在国家自然科学基金项目资助下,北京大学地球与空间科学学院沈佳恒研究员在二叠纪末生物大灭绝研究中取得重要进展。相关研究成果以“Early and late phases of the Permian–Triassic mass extinction marked by different atmosp

地质地球所发现一种示踪“隐藏”古风化壳的新方法

  在全球碳循环的研究中,硅酸盐化学风化被认为是大气CO2的一个重要汇。其中,玄武岩的分布面积尽管只有全球陆地表面积的5%,但其风化作用消耗的CO2占所有硅酸盐风化作用消耗的1/3。大规模快速化学风化对气候变化、海洋氧化、生态系统以及生物灭绝事件有直接或间接的影响。风化后的残余物经埋藏、压实和固结可

地化所揭示全球土地利用对碳酸盐岩风化碳汇的控制机理

  碳酸盐岩风化碳汇是全球碳循环的重要组成部分,研究碳酸盐岩风化过程对气候和土地利用变化的敏感性不仅有助于解决所谓的“全球遗失碳汇问题”,而且有助于揭示该地质过程在未来全球碳循环中的地位,以应对全球气候变化。中国科学院地球化学研究所环境地球化学国家重点实验室研究员刘再华与柏林自由大学教授Georg

地球环境所等揭示高侵蚀流域河水镁同位素变化控制机制

  碳酸盐岩和硅酸盐岩的风化行为及其Mg同位素组成(δ26Mg)具有显著差异。其中,碳酸盐岩的快速溶解动力学会向水体中产生继承性的δ26Mg。有研究表明河流δ26Mg与碳酸盐岩风化强度(CWI)呈负相关,因此河水δ26Mg是示踪大陆碳酸盐岩风化的潜在指标。然而,河水δ26Mg变化及其分馏作用的受控因

研究揭示稀土矿床成矿生物地球化学过程

  近日,中国科学院广州地球化学研究所研究员何宏平团队利用微生物溶解花岗岩的实验研究,揭示了微生物对花岗岩风化过程中稀土元素活化和分异的影响。相关研究成果在线发表于Geochimica et Cosmochimica Acta。  离子吸附型稀土矿床主要发育于富含稀土元素的花岗岩风化壳中。风化过程中

大连溢油污染研究获进展

  近日,中科院烟台海岸带研究所河口研究组,采用定期样品采集和色谱质谱分析的手段,对2010年大连“7·16”溢油事故进行了持续跟踪研究。相关成果发表于《海洋污染通报》上。   2010年,大连“7·16”溢油事故对大连新港邻近海域和近岸生态环境造成了严重的污染损害。中科院烟台海岸带研究所的持续跟

化学所离子液体包二氧化碳型微乳液研究取得新成果

  离子液体包二氧化碳型微乳液研究取得新成果  微乳液是热力学稳定的油水分散体系,在工业、农业、医药等许多领域的应用十分广泛。开发新型绿色微乳液体系具有重要理论和实际意义。  超临界CO2和离子液体是具有许多特性的绿色溶剂。在国家自然科学基金委、科技部和中国科学院的大力支持下,化学研