PrFe2稀土合金中的巨磁致伸缩及自旋再取向研究
南京大学唐绍龙教授课题组唐妍梅博士利用稳态强磁场实验装置(SHMFF)的X射线衍射仪设备(XRD),开展了具有立方Laves相结构的PrFe2合金研究并取得了新的进展,首次报道了PrFe2稀土合金中的巨磁致伸缩以及自旋再取向等效应。 理论预言,具有Laves相的PrFe2合金在低温(0K)下具有5600ppm的磁致伸缩效应,具有潜在的应用价值。但是,由于具有Laves相的单相晶体合成困难,因此在实验上尚未观察到理论上所预言的巨大的磁致伸缩效应。 南京大学唐绍龙教授研究组用高压退火手段,合成了具有纯的Laves相的PrFe1.9多晶样品,并用强磁场科学中心的变温X射线手段,对低温下的磁致伸缩效应进行了深入的研究。研究表明,当具有立方Laves相结构的材料发生磁致伸缩时,会产生不同的结构畸变,相应的X射线衍射特征峰也会发生变化。通过对PrFe1.9立方Laves相合金的特征峰{400}和{222}在不同温度下的X射线......阅读全文
X射线衍射法测量铝合金残余应力及误差分析
在介绍了X射线衍射法测量残余应力基本原理的基础上,以7075铝合金板材为实验对象,Photo公司的X射线衍射仪为实验仪器,采用不同的方向和衍射角对水域淬火后的7075铝板的表面残余应力进行测试,对测试结果进行处理并分析了应力产生的原因,提出了针对各种原因的解决方法。发现在单一方向上测量结果的线性和相
X射线衍射分析
XRD物相分析是基于多晶样品对X射线的衍射效应,对样品中各组分的存在形态进行分析。测定结晶情况,晶相,晶体结构及成键状态等等。 可以确定各种晶态组分的结构和含量。灵敏度较低,一般只能测定样品中含量在1%以上的物相,同时,定量测定的准确度也不高,一般在1%的数量级。XRD物相分析所需样品量大(0.1g
X射线衍射仪
特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线衍射仪的英文名称是X-ra
单晶射线衍射仪
单晶射线衍射仪是一种用于化学领域的分析仪器,于2004年1月1日启用。 技术指标 额定功率:50kv 40mA。CCD探测器:62mm 4K CCD芯片,Mo 光源增益>170电子/X光子; X-射线发生器:功率3kW,Mo靶陶瓷X射线光管; 三轴(ω,2θ,φ)测角仪:φ360º旋转≤0.
X射线衍射简介
1912年,劳厄等人根据理论预见,证实了晶体材料中相距几十到几百皮米(pm)的原子是周期性排列的;这个周期排列的原子结构可以成为X射线衍射的“衍射光栅”;X射线具有波动特性, 是波长为几十到几百皮米的电磁波,并具有衍射的能力。 这一实验成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,
X射线衍射分析
建立在X射线与晶体物质相遇时能发生衍射现象的基础上的一种分析方法。应用这种方法可进行物相定性分析和定量分析、宏观和微观应力分析 。① 物相定性分析:每种晶体物相都有一定的衍射花样,故可根据不同的衍射花样鉴别出相应的物相类别。由于这种方法能确定被测物相的组成,在机械工程材料特别是金属材料的研究中应用
X射线衍射仪
产品型号: X'Pert PRO生产厂家:荷兰帕纳科公司PANalytical B.V.(原飞利浦分析仪器)仪器介绍:X'Pert PRO X射线衍射仪采用陶瓷χ光管、DOPS直接光学定位传感器精确定位和最优化的控制台及新型窗口软件。采用模块化设计,可针对不同的要求采用最优的光学系统
X射线衍射仪构造
X射线衍射仪的形式多种多样,用途各异,但其基本构成很相似,为X射线衍射仪的基本构造原理图,主要部件包括4部分。 (1)高稳定度X射线源 提供测量所需的X射线,改变X射线管阳极靶材质可改变X射线的波长,调节阳极电压可控制X射线源的强度。 (2)样品及样品位置取向的调整机构系统 样品须是单晶、粉
X射线衍射及应用
1895年伦琴发现X射线.德国物理学家劳厄于1912年发现了X射线衍射现象,并导出了劳厄晶体衍射公式.紧接着,英国物理学家布拉格父子又将此衍射关系用简单的布拉格定律表示,使之易于接受.到本世纪四、五十年代,X射线衍射的原理、方法及在各方面的应用虽已建立,其应用范围已遍及物理、化学、地质学、生命科学,
X射线衍射的原理
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。
X射线衍射的原理
当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。布拉格方程1913年英国物理学家
X射线衍射仪原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物
多晶x射线衍射仪
主要应用于样品的物像定性或定量分析、晶体结构分析、材料的织构分析、宏观应力或微观应力的测定、晶粒大小测定、结晶度测定等等,因此,在材料科学、物理学、化学、化工、冶金、矿物、药物、塑料、建材、陶瓷。。。。。。。。。。。。。。以至考古、刑侦、商检等众多学科和行业中都有广泛的应用,是理工科院校和材料研究、
X射线衍射技术简介
物质结构的分析尽管可以采用中子衍射、电子衍射、红外光谱、穆斯堡尔谱等方法,但是X射线衍射是最有效的、应用最广泛的手段,而且X射线衍射是人类用来研究物质微观结构的第一种方法。X射线衍射的应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分析手
X射线衍射仪法
X射线主要被原子中紧束缚的外层电子所散射。X射线的散射可以是相干的(波长不变)或非相干的(波长变)。相干散射的光子可以再进行相互干涉并依次产生一些衍射现象。衍射出现的角度(θ)可以与晶体点阵中原子面间距(d)联系起来,因此X射线衍射花样可以研究宝玉石的晶体结构和进行物相鉴定。一、X射线的产生及其性质
X射线衍射仪法
X射线主要被原子中紧束缚的外层电子所散射。X射线的散射可以是相干的(波长不变)或非相干的(波长变)。相干散射的光子可以再进行相互干涉并依次产生一些衍射现象。衍射出现的角度(θ)可以与晶体点阵中原子面间距(d)联系起来,因此X射线衍射花样可以研究宝玉石的晶体结构和进行物相鉴定。一、X射线的产生及其性质
X射线衍射仪应用
Olympus便携式X 射线衍射仪BTX可能直接分析出岩石的矿物组成及相对含量,并形成了定性、定量的岩性识别方法,为录井随钻岩性快速识别、建立地质剖面提供了技术保障。每种矿物都具有其特定的X 射线衍射图谱,样品中某种矿物含量与其衍射峰和强度成正相关关系。在混合物中,一种物质成分的衍射图谱与其他物质成
X射线衍射的特点
波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!
X射线衍射的特点
波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!
X射线衍射的应用
X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面: 物相分析 物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中
X射线衍射的jianji
物质结构的分析尽管可以采用中子衍射、电子衍射、红外光谱、穆斯堡尔谱等方法,但是X射线衍射是最有效的、应用最广泛的手段,而且X射线衍射是人类用来研究物质微观结构的第一种方法。X射线衍射的应用范围非常广泛,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分
多晶X射线衍射仪
多晶X射线衍射仪是一种用于材料科学领域的分析仪器,于2008年7月1日启用。 技术指标 ● X射线高压发生器:最大功率:3kW,最大电压:60kV,最大电流:60mA ● 陶瓷X光管:Cu靶,最大功率:2.2kW, 最大电压:60kV,最大电流:55mA ● q/q 扫描模式,扫描范围:0.
X射线衍射的特点
波长短,穿透力强,可进行无损探伤检测、透视、晶体结构表征、微观应力测试等应用!
单晶X射线衍射的单晶衍射仪法
此法用射线计数仪直接记录射线的强度。单晶衍射仪有线性衍射仪、四圆衍射仪和韦森堡衍射仪等,其中以四圆衍射仪(图4),(见彩图)最为通用。所谓四圆是指晶体和计数器藉以调节方位的四个圆,分别称为φ圆、圆、w圆和2θ圆。φ圆是安装晶体的测角头转动的圆;圆是支撑测角头的垂直圆,测角头可在此圆上运动;w圆是使圆
单晶X射线衍射的单晶衍射仪法
此法用射线计数仪直接记录射线的强度。单晶衍射仪有线性衍射仪、四圆衍射仪和韦森堡衍射仪等,其中以四圆衍射仪(图4),(见彩图)最为通用。所谓四圆是指晶体和计数器藉以调节方位的四个圆,分别称为φ圆、圆、w圆和2θ圆。φ圆是安装晶体的测角头转动的圆;圆是支撑测角头的垂直圆,测角头可在此圆上运动;w圆是使圆
X射线粉末衍射仪和X射线衍射仪又什么区别
“X射线衍射仪"可分为"X射线粉末衍射仪"和"X射线单晶衍射仪器".由于物质要形成比较大的单晶颗粒很困难.所以目前X射线粉末衍射技术是主流的X射线衍射分析技术.单晶衍射可以分析出物质分子内部的原子的空间结构.粉末衍射也可以分析出空间结构.但是大分子(比如蛋白质等)等复杂的很难分析.X射线粉末衍射可以
电子衍射与X射线衍射有什么异同
含义不同: 电子衍射与x射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律。形成不同: 多晶金属材料经机械加工、热处理等工艺,往往使晶粒的某些晶向或晶面与材料加工方向趋于一致。当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电
电子衍射与X射线衍射有什么异同
含义不同: 电子衍射与x射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律。形成不同: 多晶金属材料经机械加工、热处理等工艺,往往使晶粒的某些晶向或晶面与材料加工方向趋于一致。当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电
电子衍射与X射线衍射有什么异同
含义不同: 电子衍射与x射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律。形成不同: 多晶金属材料经机械加工、热处理等工艺,往往使晶粒的某些晶向或晶面与材料加工方向趋于一致。当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电
电子衍射与X射线衍射有什么异同
含义不同: 电子衍射与x射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律。形成不同: 多晶金属材料经机械加工、热处理等工艺,往往使晶粒的某些晶向或晶面与材料加工方向趋于一致。当电子波(具有一定能量的电子)落到晶体上时,被晶体中原子散射,各散射电