长命百岁,靠保健还是靠基因?

91岁的杨振宁 近20年前,有幸目睹著名漫画家左川先生创作的一幅漫画,题目叫“殊途同归”。画面是一个记者请两位寿星介绍自己的养生之道,一位说:饮食清淡,不嗜烟酒;另一位说:每顿吃肉,抽烟喝酒。做了几十年科普期刊美编的左先生笑着说,这是人们很难搞明白的养生话题。 去年在四川绵阳出了件新鲜事。家住游仙区六里村的101岁的秦洪老人,一天三顿不离酒,旱烟袋随身带,人走到哪就抽到哪。秦洪老人至今身板硬朗,精神矍铄,耳不聋、眼不花、背不驼,记忆力也不错,不仅能清晰回忆如烟往事,还能背诵出大段古诗词,成为当地闻名的百岁奇人。 新闻媒体报道了秦洪老人的故事后,引起健康研究机构的重视,他们决定对老人的基因、家族史和生活习惯进行检测追踪,希望能在某种程度上揭开老人长寿的原因。 杨振宁对自己的百岁自信 2010年,著名物理学家、诺奖得主杨振宁先生在新加坡接受采访时说,自己希望再活20年,从现在的米寿从容迈入茶寿。中国古人......阅读全文

遗传重组热点基因研究

        遗传重组(它涉及DNA股的断开和重接以产生新的基因组合)是真核细胞生物中的一种基本的生物学过程。在哺乳动物减数分裂的时候,在这一专门化的细胞分裂过程中,来自母系和父系的染色体被一分为二并产生出精子细胞和卵子细胞,而重组过程则将同源染色体的不同部分连接在了一起,从而导致了后代中的基

具有遗传风险的基因介绍NBN基因

该基因突变与nijmegen破碎综合征(一种以小头畸形、生长迟缓、免疫缺陷和癌症易感性为特征的常染色体隐性染色体不稳定综合征)有关。编码蛋白是由5种蛋白质组成的MRE11/RAD50双链断裂修复复合物的成员。这种基因产物被认为与DNA双链断裂修复和DNA损伤诱导的检查点激活有关。

具有遗传风险的基因介绍SDHD基因

这个基因编码呼吸链复合物ii的一个成员,负责琥珀酸的氧化。编码蛋白是将复合物锚定在线粒体内膜基质侧的两个完整膜蛋白之一。该基因突变与肿瘤的形成有关,包括遗传性副神经节瘤。疾病的传播几乎完全通过父系等位基因发生,这表明该位点可能是母系印记。这个基因在1号、2号、3号、7号和18号染色体上有假基因。选择

具有遗传风险的基因介绍PDGFRA基因

PDGFRA基因编码的蛋白全名为血小板源性生长因子受体α,是一种细胞表面受体酪氨酸激酶,PDGFRA可以与其相应的配体PDGF结合后活化,再激活磷脂酰肌醇、cAMP及多种蛋白质的磷酸化途径,调控细胞的分裂和增殖,当基因激活异常时,则会导致肿瘤的发生并促进肿瘤血管生成,PDGFRA的突变与胃肠道间质瘤

具有遗传风险的基因介绍FANCG基因

fanconi贫血互补组(fanc)目前包括fanca、fancb、fancc、fancd1(也称为brca2)、fancd2、fance、fancf、fancg、fanci、fancj(也称为brip1)、fancl、fancm和fancn(也称为palb2)。先前定义的组fanch与fanca相

具有遗传风险的基因介绍EPCAM基因

该基因编码癌相关抗原,是一个家族的成员,至少包含两种I型膜蛋白。这种抗原在大多数正常上皮细胞和胃肠道癌上表达,并作为一种同型钙依赖性细胞粘附分子发

具有遗传风险的基因介绍MITF基因

该基因编码一个转录因子,包含碱性螺旋环螺旋和亮氨酸拉链结构特征。调节黑素细胞视网膜色素上皮的分化和发育,并负责黑素生成酶基因的色素细胞特异性转录。该基因的杂合子突变引起听觉色素综合征,如Waardenburg综合征2型和Tietz综合征。另外,还发现了编码不同亚型的剪接转录变体。

具有遗传风险的基因介绍MAX基因

该基因编码的蛋白质是碱性螺旋环螺旋亮氨酸拉链(bhlhz)转录因子家族的成员。它能与其他家族成员形成同二聚体和异二聚体,包括mad、mxi1和myc。myc是一种参与细胞增殖、分化和凋亡的肿瘤蛋白。同二聚体和异二聚体竞争一个共同的dna靶位点(e盒),这些二聚体形式之间的重排提供了一个复杂的转录调控

具有遗传风险的基因介绍FANCC基因

Fanconi贫血互补组(FANC)目前包括Fanca、Fancb、Fancc、Fancd1(也称为brca2)、Fancd2、Fance、Fancf、Fancg、Fanci、Fancj(也称为brip1)、Fancl、Fancm和Fancn(也称为palb2)。先前定义的组fanch与fanca相

具有遗传风险的基因介绍KIT基因

KIT基因编码的蛋白是干细胞因子受体SCFR,也被称为原癌基因c-kit或酪氨酸蛋白激酶kit或CD117,是一种受体酪氨酸激酶,这个基因突变与胃肠道间质瘤,肥大细胞病,急性髓性白血病有关。

具有遗传风险的基因介绍PTEN基因

PTEN基因编码的蛋白具有蛋白磷酸酶和脂质磷酸酶活性,是第一个具有磷酸酶活性的抑癌基因,也是是继p53和Rb基因之后,与肿瘤发生密切相关的一种抑癌基因,其主要机制因为PTEN是PI3K/Akt通路的主要负调控因子。PTEN的功能缺陷在人类多种肿瘤中广泛存在。

具有遗传风险的基因介绍HFE-基因

该基因编码的蛋白是一种膜蛋白,与mhcⅠ类蛋白相似,与beta2微球蛋白(beta2m)相关。认为该蛋白通过调节转铁蛋白受体与转铁蛋白的相互作用来调节铁的吸收。铁储存障碍,遗传性血色素沉着症,是一种隐性遗传疾病,是由该基因缺陷引起的。至少有9个选择性剪接的变异已经被描述为这个基因。已发现其他变体,但

具有遗传风险的基因介绍FH基因

该基因编码的蛋白质是三羧酸循环(tca)或krebs循环的酶组分,催化富马酸盐生成L-苹果酸。它以胞质形式和n-末端延伸形式存在,仅在所使用的翻译起始位点不同。n-末端延伸形式的靶向是线粒体,在线粒体中,延伸的移除产生与细胞质中相同的形式。它类似于一些耐高温的Ⅱ类延胡索酸酶,具有四聚体的功能。该基因

具有遗传风险的基因介绍BLM基因

bloom综合征基因产物与含有dna解旋酶的desh盒recq亚群有关,具有dna刺激的atp酶和atp依赖的dna解旋酶活性。引起布鲁姆综合征的突变会删除或改变螺旋酶基序,并可能使3'-5'螺旋酶活性丧失。正常蛋白可能起到抑制不适当重组的作用。

具有遗传风险的基因介绍POLE基因

该基因编码DNA聚合酶epsilon的催化亚单位。这种酶参与DNA修复和染色体DNA复制。该基因突变与结直肠癌12和面部畸形、免疫缺陷、利维多和身材矮小有关。

具有遗传风险的基因介绍CFTR基因

该基因编码atp结合盒(abc)转运蛋白超家族的一个成员。编码的蛋白质作为氯离子通道发挥作用,使其在该蛋白家族成员中独一无二,并控制上皮组织中离子和水的分泌和吸收。通道激活由调节域磷酸化、核苷酸结合域结合atp和atp水解的周期介导。这种基因的突变导致囊性纤维化,这是北欧后裔中最常见的致死性遗传疾病

具有遗传风险的基因介绍SDHB基因

呼吸链的复合物II,特别参与琥珀酸的氧化,携带电子从FADH到COQ。复合物由四个核编码亚单位组成,并定位于线粒体内膜。铁硫亚单位高度保守,包含三个富含半胱氨酸的簇,这些簇可能包含酶的铁硫中心。该基因的零星和家族性突变导致副神经节瘤和嗜铬细胞瘤,并支持线粒体功能障碍和肿瘤发生之间的联系。

具有遗传风险的基因介绍MET基因

MET基因编码的蛋白为肝细胞生长因子受体HGFR,具有酪氨酸激酶活性,与多种癌基因产物和调节蛋白相关,参与细胞信息传导、细胞骨架重排的调控,是细胞增殖、分化和运动的重要因素。目前认为,c-met与多种癌的发生和转移密切相关,研究表明,许多肿瘤病人在其肿瘤的发生和转移过程中均有c-met过度表达和基因

具有遗传风险的基因介绍WRN基因

该基因编码dna螺旋酶蛋白recq亚家族的一个成员。编码的核蛋白在维持基因组稳定性中起着重要作用,在dna修复、复制、转录和端粒维持中发挥着重要作用。该蛋白在其中心区域包含一个n端3'到5'的外切酶域、一个atp依赖的螺旋酶域和rqc(recq螺旋酶保守区)域,以及一个c端hrdc(

具有遗传风险的基因介绍MUTYH基因

该基因编码一种参与dna氧化损伤修复的dna糖苷酶。这种酶在腺嘌呤与鸟嘌呤、胞嘧啶或8-氧-7,8-二氢鸟嘌呤(一种主要的氧化损伤的DNA损伤)不适当配对的部位从DNA主干上切除腺嘌呤碱。蛋白质定位于细胞核和线粒体。这种基因产物被认为通过在氧化损伤后引入单链断裂而在细胞凋亡信号中发挥作用。该基因突变

具有遗传风险的基因介绍ATM基因

ATM基因编码的蛋白属于PI3/PI4激酶家族,这种蛋白是一种重要的细胞周期检查点激酶,通过磷酸化调控下游一系列重要蛋白,包括抑癌蛋白p53和BRCA1、检查点激酶CHK2、检查点蛋白RAD17和RAD9以及DNA修复蛋白NBS1。ATM和与其密切相关的蛋白ATR被认为是在细胞周期调控以及DNA损伤

具有遗传风险的基因介绍SDHA基因

这个基因编码琥珀酸泛醌氧化还原酶的一个主要催化亚单位,一个线粒体呼吸链的复合物。该复合物由四个核编码亚单位组成,位于线粒体内膜。这种基因突变与一种线粒体呼吸链缺乏症(leigh综合征)有关。在染色体3q29上发现了一个假基因。另外,已经发现该基因编码不同亚型的剪接转录变体。

具有遗传风险的基因介绍VHL基因

VHL基因的突变会导致林岛综合征(Von Hippel—Lindau Syndrome,VHL),即VHL综合征,也VHL基因名字的来源。VHL综合征是常染色体显性遗传性肿瘤疾病,一般包括肾囊肿、肾细胞癌、胰腺囊肿、胰腺癌、嗜铬细胞瘤、视网膜血管瘤、上皮性囊腺瘤和大脑脊髓的血管瘤病。发病机制为VHL

遗传对寿命影响还不如伴侣:4亿大数据揭示长寿规律

图片来源:pixabay  2013年,谷歌联合创始人兼首席执行官拉里·佩奇(Larry Page)宣布成立一个新公司Calico,致力于解决令人讨厌的死亡问题,研发延长寿命的科技。从那时起,这家公司招募了很多研究人员,试图搞清衰老的基本生物学问题,以期有朝一日能够战胜死亡。  该公司首批研究人员之

Sci-Adv:什么?特殊基因突变或能促进男性长寿!

  近日,一项刊登在国际杂志Science Advances上的研究报告中,来自美国、法国和以色列的研究人员通过研究发现,生长激素受体基因突变或能够使得某些男性寿命变得更长,文章中,研究者对多个不同的男性群体进行研究发现了生长激素受体外显子3剔除后的差异。  生长激素是能够连接细胞表面其它分子的特殊

基因突变竟能阻止细胞氧化!延长寿命!

  大多数老年疾病的发生与一些特定蛋白的激活密切相关,近日,英国研究人员发现了一种可以停止这类蛋白激活,进而预防老年疾病发生的新方法。  英国萨里大学,雷丁大学,科隆大学以及皇家伯克希尔医院的化学家们发现了一种对于老年疾病预防至关重要的多态性单核苷酸。这种特定变异在很大程度上帮助他们的携带者避免了老

《自然》:一种长寿基因与记忆学习能力有关

  美国研究人员7月11日公布研究成果称,他们在动物实验中发现,一种与长寿相关的基因似乎也与实验鼠记忆及学习能力密切相关。  这一基因名为SIRT1,在此前的研究中,它编码的蛋白酶Sirtuin1已被证明可以通过限制热量消耗来延缓啮齿类动物的衰老进程。  在最新研究中,由麻省理工学院大脑和

基因调控可能是延长寿命的关键

通过自然选择,产生了衰老速度差异巨大的哺乳动物。例如,裸鼹鼠可以活到41岁,比老鼠和其他类似体型的啮齿动物长10倍以上。是什么导致了更长的寿命?根据罗切斯特大学(University of Rochester)生物学家最近的一项研究,这个谜题的关键部分在于控制基因表达的机制。多丽丝·约翰·切里(Do

研究发现一个与长寿有关的基因变异

  科学家报告称,一种与积极个性有关的基因变异可能也与人类的寿命有关。这个多巴胺受体基因——DRD4 7R等位基因的变异体在90岁以上老人中出现的频率相当高,在小鼠实验中发现,它与寿命的延长有关。   这个基因变异是多巴胺系统的一部分,它促进神经元之间的信号传导,在负责注意力及奖励驱

乌龟有何长寿秘诀?基因组测序找到线索

  俗话说,千年的王八万年的龟。若论长寿,乌龟在动物界绝对是傲视群雄的。那么,乌龟究竟有什么长寿秘诀呢?科学家希望从它们的基因组中寻找线索,以便帮助人们对抗癌症和老年疾病。  近日,西班牙奥维耶多大学和美国耶鲁大学的研究人员测序了两只巨型陆龟的基因组,并将结果发表在《Nature Ecology &