研究实现三线态光化学过程的量子相干调控
研究示意图。中国科学院大连化学物理研究所供图中国科学院大连化学物理研究所研究员吴凯丰与副研究员朱井义团队直接观测到量子点-有机分子构成的杂化自由基对的量子相干特性,并实现了三线态光化学产率的高效磁场相干调控。1月6日,相关研究成果发表于《自然-材料》。光致电荷分离之后会生成两个自旋关联的自由基,它们被称为自由基对。自由基对具有单线态和三线态自旋构型,它们之间的相互转换是一个真正意义上的量子相干过程。更重要的是,该转换过程可以通过施加外磁场进行调控。这种磁场效应在自旋化学、量子生物学、量子传感等领域备受关注。有机分子构成的自由基对的磁场效应被广泛研究,然而,其磁场效应普遍较弱,很难获得普适性的调控规律。该工作中,研究团队构建了II-VI族量子点-茜素分子杂化体系,并基于磁场调制的飞秒瞬态吸收光谱及量子动力学理论模拟,系统揭示了杂化自由基对三线态复合动力学的相干行为。不同于人工制备的纯有机自由基对,在量子点-分子杂化体系中,通过调节......阅读全文
研究揭示基于强磁场调控石墨烯量子点的光学性质
石墨烯量子点(GQDs)是一种小尺寸的二维纳米材料。近年来,因其稳定性、生物相容性、荧光可调性以及易被肾脏清除等特点,在癌症诊疗一体化中具有极大的应用,在生物医学领域引起了极大关注。现有应用于光热治疗的GQDs的光学吸收主要集中于近红外一区。然而,皮肤和组织的吸收以及散射使得近红外一区的激光穿透
量子点单分子成像助力CRISPR机制研究
量子点(Quantum dots)做为无机合成的纳米材料,具有超越传统荧光染料的独特光学性质,比如荧光亮度高、无需避光、不会淬灭,是新一代的优质荧光探针。单分子成像(single-molecule imaging)技术中,将荧光探针用于单分子标记,要求荧光亮度高以满足灵敏度和分辨率的需求,同时要求观
基于量子点的单分子荧光示踪技术揭示分子马达的行走...
基于量子点的单分子荧光示踪技术揭示分子马达的行走机制在生物体内,分子马达参与肌肉收缩、胞质运输、DNA转录以及有丝分裂等一系列重要的生命活动。在执行上述功能过程中,分子马达需要借助ATP水解释放的能量,完成在细胞骨架上的特定运行轨迹。因此,关于分子马达沿着细胞骨架的行走机制的研究,对于深刻认识分子马
“量子比特+机器学习”可精准测磁场
北京7月8日电,据芬兰阿尔托大学官网近日报道,该校科研人员主导的国际团队提出了一种采用量子系统测量磁场的方法,新系统的精确度超过了标准量子极限。他们表示,从量子状态中快速提取信息,对于未来的量子处理器和现有超灵敏探测器来说都必不可少。此项研究向利用量子增强方法进行传感迈出了关键的第一步。 在
碳点和碳量子点的区别
一、含义不同:量子点一般是从铅、镉和硅的混合物中提取出来的,但这些量子点一般有毒,对环境也有很大的危害。所以科学家们寻求在一些良性的化合物中提取量子点。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉。它的研究代表了发光纳米粒子研究进入了一个新的阶段。二、用途不同:碳点(CDs
量子点是什么技术
量子点实际上是纳米半导体。通过施加一定的电场或光的压力,这些纳米半导体材料,它们会发出特定频率的光,这种半导体的频率变化,通过调节纳米半导体的大小可以控制它发出的光的颜色,由于纳米半导体具有有限的电子和空穴(电子眼)的特点,这一特点在本质上是相似的原子或分子被称为量子点。量子点是重要的低维半导体材料
量子点控制方法找到
据来自剑桥大学的消息,该校研究人员日前找到了能够控制半导体量子点中原子核排列的方法,从而为开发量子存储器提供了可行途径。 量子点是由数千个原子组成的晶体,每一个原子都与被捕获的电子发生磁相互作用。如果不干涉的话,这种拥有核自旋的电子相互作用,限制了电子作为量子比特(量子位)的作用。剑桥大学卡文
量子点表征,最新Nature
理解和控制开放量子系统中的退相干、实现长相干时间对量子信息处理是至关重要的。尽管目前单个系统上已经取得了巨大进展,单自旋的电子自旋共振(ESR)被证明具有纳米级别的分辨率,但要进一步理解许多复杂固态量子系统中的退相干需要将环境控制到原子级别,这可能要通过扫描探针显微镜的原子/分子表征和操作能力实
量子点生物应用指南
量子点是尺寸在 1-100 纳米的半导体材料(包括Ⅱ-Ⅵ族,Ⅲ-Ⅴ族,Ⅳ族等),具有明显的量子效应。与传统的有机荧光染料相比,具有灵敏度高,稳定性好,荧光寿命长等优势。量子点的特殊的光学性质使得它在光化学、分子生物学、医药学等研究中有极大的应用前景。量子点最有前途的应用领域就是作为荧光探针应用于生物
量子点LED应用方案
应用背景量子点发光二极管(Quantum dot light-emitting diode,简称QLED)是一种以量子点为发光层的电致发光器件,其结构和发光原理与有机发光二极管相似。量子点(Quantum dots,简称QD)是一类纳米尺寸的半导体材料,通常呈胶体状态,常见的
实现量子点—分子杂化体系的近红外热延迟发光
近日,中国科学院大连化学物理研究所研究员吴凯丰与副研究员杜骏团队在量子点—有机分子能量传递机制与应用的研究中取得新进展。团队采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。相关成果发表在《德国应用化学》上,并被选为VIP(Very Important
实现量子点—分子杂化体系的近红外热延迟发光
原文地址:http://news.sciencenet.cn/htmlnews/2023/1/492548.shtm 近日,中国科学院大连化学物理研究所研究员吴凯丰与副研究员杜骏团队在量子点—有机分子能量传递机制与应用的研究中取得新进展。团队采用低毒性的CuInSe2量子点结合并四苯分子,实现了
量子点标记技术实现分子马达在活细胞的示踪
基于量子点的单分子荧光示踪技术,对于体外研究分子马达在细胞骨架上的行走模式具有重要意义。目前对于细胞内分子马达运动特性的研究,是通过对内吞体、黑素体等细胞器的示踪而间接实现的。这些细胞器通过分子马达运输,因此,对细胞器的运动监测可间接分析分子马达的运动特性。巴黎第六大学Giovanni Capp
量子点—分子杂化体系的近红外热延迟发光获实现
近日,中科院大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。 研究团队前期对量子点—有机分子的三线态能量转移(TET
穿膜肽运载量子点等大分子进入细胞核
转运大分子进入核膜的能力,对于真核细胞功能是必需的。将分子成像探针或治疗试剂有效递送入细胞核,对于发展新的疾病诊断方法和治疗策略具有重要意义。在传统的细胞核转运中,需要转运分子具有核定位信号(Nuclear localization signal, NLS),同时需要胞浆因子(如import
研究实现三线态光化学过程的量子相干调控
近日,中国科学院大连化学物理研究所研究员吴凯丰与副研究员朱井义团队在光化学与光物理交叉领域中取得进展。该团队直接观测到量子点-有机分子构成的杂化自由基对的量子相干特性,实现了三线态光化学产率的高效磁场相干调控。光致电荷分离后会生成两个自旋关联的自由基,称为自由基对。自由基对具有单线态和三线态自旋构型
研究实现三线态光化学过程的量子相干调控
研究示意图。中国科学院大连化学物理研究所供图中国科学院大连化学物理研究所研究员吴凯丰与副研究员朱井义团队直接观测到量子点-有机分子构成的杂化自由基对的量子相干特性,并实现了三线态光化学产率的高效磁场相干调控。1月6日,相关研究成果发表于《自然-材料》。光致电荷分离之后会生成两个自旋关联的自由基,它们
量子点自旋驰豫诱导分子三线态生成新机制
近日,大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点光化学应用领域研究中取得新进展,揭示了一种量子点自旋驰豫诱导分子三线态生成的新机制,并探索了该机制的重要应用。 传统意义上,自旋相关的量子现象研究是物理学的范畴,但近年来化学家合成的各类材料也
量子点自旋驰豫诱导分子三线态生成新机制
近日,大连化物所光电材料动力学研究组(1121组)吴凯丰研究员团队在量子点光化学应用领域研究中取得新进展,揭示了一种量子点自旋驰豫诱导分子三线态生成的新机制,并探索了该机制的重要应用。 传统意义上,自旋相关的量子现象研究是物理学的范畴,但近年来化学家合成的各类材料也
大连化物所实现量子点—分子杂化的近红外热延迟发光
近日,大连化物所光电材料动力学研究组 (1121组) 吴凯丰研究员与杜骏副研究员团队在量子点—有机分子能量传递机制与应用的研究中取得新进展,采用低毒性的CuInSe2量子点结合并四苯分子,实现了该类杂化体系在近红外波段的热延迟发光。研究团队前期对量子点—有机分子的三线态能量转移(TET)机制研究表明
我国学者通过β-CD分子修饰CdTe纳米晶改进量子点干凝胶
量子点(QD),又称半导体纳米晶,一般是由II-VI族元素或Ⅲ-Ⅴ族元素构成,因其具有独特的光电性质而受到广泛关注。QD的荧光性能与其表面化学结构具有极强的依赖性,研究者们已经基于QD的荧光增强或荧光淬灭开发出了多种检测分析方法。但是,目前市面上还很难找到基于这些方法的仪器或商业化产品。其中的一
碳量子点有哪些应用
碳量子点还是比较好的,石墨烯量子点在量子点的应用中比较有前途。具体有哪些应用主要看量子点的具体效应,针对不同的效应它的用途就不同。从大的方向来讲,量子点的应用主要有太阳能电池、发光器件、光学生物标记等领域。合成方法同样也有很多,比较常见的有水热合成法、胶束合成法以及半导体微电子加工技术、外延生长模式
12点直播|奇妙量子世界
直播时间:2024年5月19日(周日)12:00 - 18:00直播平台:https://rmtzx.sciencenet.cn/app/kexuewang/liveShare/#/cathay?broadcastId=86c96ab7-506b-4eff-b9f3-cd6406159373(科学网
我国学者在三线态光化学的量子相干调控研究方面取得进展
图 量子点-分子杂化自由基对的光化学相干调控原理,强磁场(7 T)下直接观测到自由基对的量子拍频(证明其量子相干特性),以及基于量子相干实现了自由基复合动力学的高效磁场调控 在国家自然科学基金项目(批准号:22173098)资助下,中国科学院大连化学物理研究所吴凯丰研究员团队在光化学自旋调控研究中
新量子弱磁场共振分析仪的功能特点
未病先知:在病变细胞仅有十个左右时,检测仪就能扑捉到亚健康状态下病变细胞的微弱变化预报发病前兆,此时采取保健措施,即可有效地预防各种慢性病。 快捷准确:几分钟就可知道您的身体的多项指数。检测方法可以大大节省您的时间与精力。检查系统数据库是利用科学方法,进行严格的卫生统计学处理,并经大量的临床验
新量子弱磁场共振分析仪的测定原理
测定原理 人体是大量细胞的集合体,细胞在不断的生长、发育、分化、再生、调亡,细胞通过自身分裂,不断自我更新。成人每秒大约有2500万个细胞在进行分裂,人体内的血细胞以每分钟大约1亿个的速率在不断更新,在细胞的分裂、生长等过程中,构成细胞最基本单位的原子的原子核和核外电子这些带电体也在一刻不停地
新型量子点基分子印迹荧光传感器在快速检测中的应用
摘要 作为一种新型荧光纳米材料,量子点具有十分优异的光学特性,是分析化学、生物科学、医学等领域研究的热点标记材料。 分子印迹聚合物是能够进行特异性识别和选择性吸附的“仿生”材料,它易于制备且具有较好的重现性和稳定性,因而分子印迹技术已成为具有广阔应用前景的识别技术。 量子点基分子印迹荧光传感器
新量子弱磁场共振分析仪加密中款简介
加密中款量子弱磁场共振分析仪[2]/生物微磁场共振分析仪现有各软件版本: 中文简体、繁体、外文。 中文简体量子弱磁场共振分析仪有标准版(中性无配方); 标准配方版(安利版、完美版、无限极版); 专业配方版(安利版、完美版、国珍版、权健版、天士力版、太阳神版、科士威版)。
新量子弱磁场共振分析仪独有特点有哪些?
1、Vista操作系统下制作,可适应任何Windows操作系统 2、采用最新技术芯片,性能更稳定。 3、全新设计、制作电路板,同时采用方形USB接口连接,运行稳定、可靠 4、全新的操作界面,操作更加简单、人性化 5、增强的客户档案管理,随时查阅目标客户 6、美观的检测报告,良好的色彩搭
我国自主研发的量子磁力仪载荷实现全球磁场测量
我国首台自主研发的量子磁力仪载荷——“CPT原子磁场精密测量系统”于7月27日搭载空间新技术试验卫星(SATech-01)发射。11月7日,国产量子磁力仪载荷的无磁伸展臂在轨展开,载荷进入在轨长期工作阶段,目前已获取五天的有效探测数据,实现了全球磁场测量,推进了我国量子磁力仪的空间应用研究。 C