研究解析成年哺乳动物大脑皮层和海马内源NMDA受体的组装和结构
1月23日,中国科学院脑科学与智能技术卓越中心竺淑佳研究组和上海药物研究所李扬研究组合作,在《细胞》(Cell)上在线发表了题为《成年哺乳动物大脑皮层和海马内源NMDA受体的组装和结构》的研究论文。该团队通过提取大鼠大脑皮层和海马中的内源N-甲基-ᴅ-天冬氨酸(NMDA)受体,解析出3种主要亚型和比例,揭示了内源NMDA受体的原子分辨率三维结构,突破了NMDA受体的分子结构与功能研究局限于异源重组表达系统的瓶颈。这一成果为开发靶向NMDA受体治疗神经或精神类疾病的新型药物奠定了重要理论基础。学习和记忆是人类认知与感知世界的高级脑功能,而突触可塑性的改变被认为是学习和记忆的物质基础。NMDA受体存在于突触上的离子型谷氨酸门控通道家族,广泛参与神经发育、突触可塑性、学习记忆、认知及情绪等高级脑功能调控,被视为学习和记忆的关键“分子开关”。NMDA受体在负责学习和记忆相关高级认知功能的脑区发挥重要作用;受体通道对钙离子具备高通透性,根......阅读全文
关于Fc受体的基本介绍
Fc受体为对免疫球蛋白Fc部分c末端的受体。免疫球蛋白(Ig)与抗原结合后,抗体的Fc段变构,与细胞膜上的Fc受体结合,产生各种生物效应,抗原-抗体复合物对细胞的作用都是通过Fc受体的介导,因此Fc受体在免疫功能及其调节中具有非常重要的作用。每一类Ig都有其相对应的Fc受体。
视黄酸受体的定义和功能
中文名称视黄酸受体英文名称retinoic acid receptor;RAR定 义属于核受体超家族,包括α、β、γ三种。RAR-β又分β1、β2、β3、β4等。通过与其配体结合调节靶基因转录,从而发挥各种生物学效应。在介导细胞生长和凋亡方面起重要作用。应用学科生物化学与分子生物学(一级学科),激
5羟色胺受体的简介
5-羟色胺受体,也被称为血清素受体或5-HT受体,是一群于中枢神经系统中央处和末梢神经系统周边出现的G蛋白偶联受体及配体门控离子通道。它们同时调节兴奋性和抑制性神经传导物质的传递。
细胞因子受体的分类
一、细胞因子受体的结构和分类根据细胞因子受体cDNA序列以及受体胞膜外区氨基酸序列的同源性和结构性,可将细胞因子受体主要分为四种类型:免疫球蛋白超家族(IGSF)、造血细胞因子受体超家族、神经生长因子受体超家族和趋化因子受体。此外,还有些细胞因子受体的结构尚未完全搞清,如IL-10R、IL-12R等
受体与配体结合的特征
受体与配体之间结合的结果是受体被激活,并产生受体激活后续信号传递的基本步骤。在生理条件下,受体与配体之间的结合不通过共价键介导,主要靠离子键、氢键、范德华力和疏水作用而相互结合。受体在与配体结合时,具有饱和性、高亲和性、专一性、可逆性等特性。
细胞内受体的简介
细胞内受体(intracellular receptor)位于胞质溶胶中受体要与相应的配体结合后才可进入细胞核。胞内受体识别和结合的是能够穿过细胞质膜的小的脂溶性的信号分子,如各种类固醇激素、甲状腺素、维生素D以及视黄酸。细胞内受体的基本结构都很相似,有极大的同源性。细胞内受体通常有两个不同的结
受体介导的胞吞现象介绍
细胞外的生物大分子(包括病毒、毒素等)选择性地与受体结合后经胞吞作用而进入细胞的过程。是受体-配体复合体得以解离,和某些受体的再利用所必需的过程。既是细胞高效率、高选择性和快速摄取胞外亲水分子的重要方法,也是穿越细胞膜运送物质的方式之一。
简述Toll样受体的分布
TLRs分布的细胞多达20余种,Muzio M 等对TLR1-TLR5表达于人类白细胞的研究中发现,TLR1能在包括单核细胞,多形核细胞,T、B淋巴细胞及NK细胞等多种细胞中表达,TLR2、TLR4、TLR5只在髓源性细胞(如单核巨噬细胞)上表达,而TLR3只特异性表达于树突状细胞(dendri
酶联受体的基本概述
这一类受体转导的信号通常与细胞的生长、繁殖、分化、生存有关 。酶联受体也是跨膜蛋白,细胞内结构域常常具有某种酶的活性,故称为酶联受体。但并非所有的酶联受体的细胞内结构域都具有酶活性,所以,按照受体的细胞内结构域是否具有酶活性将此类受体分为两大类:缺少细胞内催化活性的酶联受体和具有细胞内催化活性的受体
核受体信号转导途径
细胞内受体分布于胞浆或核内,本质上都是配体调控的转录因子,均在核内启动信号转导并影响基因转录,统称核受体。核受体按其结构和功能分为类固醇激素受体家族和甲状腺素受体家族。类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态。配体与受体的结合使HSP与受体解离,暴露D
甘露糖受体的结构特征
MR 是C 型凝集素超家族中MR 家族(MR family)中的一员,属钙依赖性Ⅰ型跨膜蛋白受体。MR从N 端到C 端依次为胞外富含半胱氨酸(cysteine-rich,CR)结构域、Ⅱ型纤维连接蛋白(fibronectintype Ⅱ,FNⅡ)结构域、8 个串连的C 型凝集素样结构域(C -t
T细胞受体的结构特点
T细胞受体是一个固定在细胞膜上的异源二聚体,多数由高度易变的α亚基和β亚基通过二硫键连结构成。这一类T细胞被称为αβ T细胞。少数含有γ亚基和δ亚基被称为γδ T细胞。T细胞受体会与恒定的CD3分子一起构成T细胞受体复合体。每一个亚基都含有两个细胞外的结构域:可变区与恒定区。这些结构域属于免疫球蛋白
关于毒素受体的基本介绍
发现很多毒素也是通过与细胞膜上的受体相结合后才产生效应的。如霍乱毒素是霍乱弧菌产生的外毒素,分子量为84000,由A、B二种亚单位组成。A亚单位有两条肽链A1和A2,由一对二硫键联接。亚单位B与细胞膜上的受体相结合。亚单位A1则具有激活膜上腺苷酸环化酶的作用。 霍乱毒素的受体是一种神经节苷脂,
JAK-STAT细胞因子受体
细胞因子受体(cytokine receptor)是细胞表面一类与酪氨酸蛋白激酶偶联的受体(tyrosine kinase-linked receptor)。这类受体单次跨膜,由两条或多条肽链组成,受体本身不具有酶活性,但他的胞内段具有与胞质酪氨酸蛋白激酶(Jak kinase)的结合位点,这类受体
关于甘露糖受体的介绍
甘露糖受体是C-型是动物凝集素的一种,能够有效快速的识别甘露糖以及岩藻糖末端的糖蛋白而组成一个有机防御体系。一般来说把甘露糖受体结构分为以下的部分:N端富含Cys区;139~192号氨基酸区;糖配体结合区CRD;糖基化位点;胞浆区及跨膜区。 肝癌淋巴转移与甘露糖受体关系: 肝癌也是癌症中致死
关于膜受体的定义介绍
细胞膜受体也是镶嵌在膜脂质双分子层中的膜蛋白质。受体蛋白质一般由两个亚单位组成:裸露于细胞膜外表面的部分叫调节亚单位,即一般所说的受体,它能“识别”环境中的特异化学物质(如激素、神经递质、抗原、药物等)并与之结合;裸露于细胞内表面的部份叫催化亚单位,常见的是无活性的腺苷酸环化酶(AC)。一般将能
G蛋白耦联型受体简介
G蛋白耦联型受体是指受体和酶或离子通道之间的相互作用通过一种结合GTP的调节蛋白介导完成的。配体与受体结合后通过G蛋白间接作用于酶或离子通道,从而调节细胞的生理活动。 G蛋白耦联型受体为7次跨膜蛋白,因此亦有人将此类受体称为七次跨膜受体。受体本身不具备通道结构,也无酶活性,它是通过与脂质双层中
受体与配体结合的特征
受体与配体之间结合的结果是受体被激活,并产生受体激活后续信号传递的基本步骤。在生理条件下,受体与配体之间的结合不通过共价键介导,主要靠离子键、氢键、范德华力和疏水作用而相互结合。受体在与配体结合时,具有饱和性、高亲和性、专一性、可逆性等特性。
5羟色胺受体的分类
血清素受体可分为七个亚科 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7。至少有十四种受体亚型已被发现,包含G蛋白偶联受体和配体门控离子通道(G protein-coupled receptor and a ligand-gated ion cha
酶联受体的功能特点
酶联受体(enzyme linked receptor)一类是受体胞内结构域具有潜在酶活性,另一类是受体本身不具酶活性,而是受体胞内段与酶相联系。都是一次跨膜的,形成同源或异源二聚体发挥作用,又称催化受体(catalytic receptor)。
G蛋白偶联受体结构介绍
G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有
什么是细胞膜受体?
细胞膜受体(cell membrane receptor)是细胞表面的一种或一类分子,它们能识别、结合专一的生物活性物质(称配体),生成的复合物能激活和启动一系列物理化学变化,从而导致该物质的最终生物效应。细胞环境中各种因素的变化,是通过细胞膜受体的作用而影响细胞内的生理过程发生相应的变化。
反受体的概念和作用
受体的经典概念是以高亲和力与其特异性配体结合 ,并参与信号转导。诱骗受体以高亲和力和特异性识别某些炎性细胞 ,但在结构上不能进行信号转导或呈递激动剂给信号转导受体。因此它们起着激动剂和信号受体的分子“陷阱”的作用。IL 1RⅡ是首次被证实的纯诱骗受体 ,后又证实诱骗受体属于TNF受体和IL 1R家族
促甲状腺受体抗体是什么
促甲状腺素受体抗体是针对TSH受体的自身抗体。包括两个类型:1.甲状腺刺激抗体,具有刺激TSH受体引起甲亢的作用,是Graves病的致病性抗体。2.甲状腺刺激阻断抗体是具有占据TSH受体,阻断TSH与受体结合而引起甲减的功能,是自身免疫性甲状腺炎发生甲减的致病性抗体。促甲状腺素受体抗体阳性是Gr
受体的分类及相应介绍
根据受体在细胞中的位置,将其分为细胞表面受体和细胞内受体两大类。受体本身至少含有两个活性部位:一个是识别并结合配体的活性部位;另一个是负责产生应答反应的功能活性部位,这一部位只有在与配体结合形成二元复合物并变构后才能产生应答反应,由此启动一系列的生化反应,最终导致靶细胞产生生物效应。1.细胞膜受体大
关于多巴胺受体的分布介绍
在缺乏每种多巴胺受体亚型的特异配体之前,广泛应用原位杂交的方法来研究多巴胺受体mRNAs在脑内的分布。D1和D2受体基因在脑内表达广泛。D1-R主要表达于尾壳核,伏隔核,视束,脑皮层和杏仁核。除此之外,D1受体还在下丘脑被探测到。尽管在黑质致密部发现有D1配体与其结合,但没有探测mRNA存在。这
盐皮质激素及其受体
醛固酮主要由肾上腺皮质球状带合成及分泌,平均分泌量为100~200/zg/d,血浆浓度为0.1~lnmoI/L,主要在肝脏代谢排出。此外,心脏、血管等组织也能合成醛固酮,并以自分泌和(或)旁分泌的形式发挥作用,可能参与了局部病理、生理过程,如纤维化等。醛固酮合成原料为胆固醇,经多种细胞色素P45
乙酰胆碱受体概述
乙酰胆碱受体包括两种:毒蕈碱型受体(M受体---G蛋白偶联型受体),产生副交感神经兴奋效应,即心脏活动抑制,支气管胃肠平滑肌和膀胱逼尿肌收缩,消化腺分泌增加,瞳孔缩小等。阿托品为毒蕈碱受体阻断剂。烟碱型受体(N受体---离子通道型受体),N1位于神经节突触后膜,可引起自主神经节的节后神经元兴奋,
简述阿片受体的作用机理
内阿片肽能神经元→释放内阿片肽(脑啡肽)→激动阿片受体→通过G蛋白偶联机制→抑制AC→Ca内流↓、K外流↑→前膜递质(P物质等)释放↓→突触后膜超极化→阻止痛觉冲动的传导、传递→镇痛。 外源性阿片类也可作用于阿片受体从而发挥镇痛作用。
受体的主要功能
受体具有两方面的功能:第一个功能是识别自己特异的信号分子(配体),并且与之结合。正是通过受体与信号配体分子的识别,使得细胞能够充满无数生物分子的环境中,辨认和接收某一特定信号。第二个功能是把识别和接受的信号,准确无误地放大并传递到细胞内部,从而启动一系列胞内信号级联反应,最后导致特定的细胞生物效应。