多阶铁电拓扑态研究获重要进展

近日,松山湖材料实验室大湾区显微科学与技术研究中心研究员马秀良团队同合作者,在自组装、高密度铁酸铋纳米结构中观测到多阶极性径向涡旋,并成功通过尺寸调控和外部电场实现不同拓扑态的转换和拓扑电荷控制。该发现为下一代高密度、多态非易失性存储器件的设计提供了全新思路。3月21日,相关成果发表于《自然-通讯》(Nature Communications)。拓扑态因其独特的物理性质和在信息存储、传输中的潜力,近年来成为凝聚态物理和材料科学的研究热点。在铁电材料中,具有可调拓扑电荷的纳米级拓扑结构被视为实现高密度、多态存储的关键。然而,此前研究多集中于低阶拓扑态,高阶结构的稳定与调控仍面临挑战。研究人员在国家自然科学基金等项目的资助下,通过前期薄膜体系设计、后期精密调控边界条件及生长工艺,在铁酸铋薄膜中成功诱导出多阶极性径向涡旋。基于高密度、自组装纳米结构的薄膜构型,研究人员直接观测到具有独特极化分布组态的二阶径向涡旋,其表现为具有“甜甜圈”......阅读全文

多阶铁电拓扑态研究获重要进展

近日,松山湖材料实验室大湾区显微科学与技术研究中心研究员马秀良团队同合作者,在自组装、高密度铁酸铋纳米结构中观测到多阶极性径向涡旋,并成功通过尺寸调控和外部电场实现不同拓扑态的转换和拓扑电荷控制。该发现为下一代高密度、多态非易失性存储器件的设计提供了全新思路。3月21日,相关成果发表于《自然-通讯》

我国学者在铁电拓扑的可控拓扑相变领域取得重要进展

图 铁电拓扑的热致拓扑相变规律及铁电拓扑的相互切换  在国家自然科学基金项目(批准号:12125407、92166104、11934016、12325402、12174347、12474021、U21A2067)等资助下,浙江大学材料科学与工程学院张泽教授、田鹤教授团队与浙江大学材料科学与工程学院洪

拓扑电子态研究应用前景广阔

未来,变革性技术会出现在哪个方向?拓扑电子态及其材料研究,极有可能。拓扑电子态是什么?中国科学院院士、中国科学院物理研究所所长方忠这样解释:“它是一大类新的量子物态,其研究对当前物理学的发展产生了深远影响,不仅深刻改变人类对物态的认识,也为变革性技术的出现提供新的可能。”2023年度国家自然科学奖一

首次发现新奇拓扑量子态

   最新发现与创新   从中国科学院合肥物质科学研究院获悉,该院稳态强磁场中心的郝宁宁研究员课题组,在拓扑新物态研究中取得最新进展,他们发现硫化铁化合物中存在一种交错二聚型反铁磁序,并且这种反铁磁序会调制体系进入一种新的拓扑物态:拓扑晶体反铁磁相。相关研究成果日前相继发表在欧洲物理学会《新物理学杂

层状反铁电材料首次获得本征六重极化态

近期,西安交通大学与中国科学技术大学、湖南师范大学、南京大学等单位合作,在二维层状反铁电材料实验研究中取得进展,在该体系中首次获得本征六重极化态,提出了垂直铁电/反铁电畴堆叠耦合实现的本征六态和四态机制。近期该成果在线发表于《自然-通讯》上。在该研究中,研究团队利用化学气相输运法成功合成了高质量二维

铁基高温超导材料中一种新型一维拓扑边界态被发现

  中国科学技术大学合肥微尺度物质科学国家实验室王征飞教授与美国犹他大学刘锋教授,清华大学薛其坤院士、马旭村研究员,中科院物理所周兴江研究员合作,首次发现了铁基高温超导材料中的一种新型一维拓扑边界态,该成果于7月4日在线发表于《自然—材料》。  超导材料与拓扑材料是近年来凝聚态物理研究的两大热点。理

物理所等在二维铋中发现单质铁电态

铁电性是指在某些材料中表现出的一种自发电极化现象。这种极化可以通过施加外部电场进行翻转操作。由于铁电相可以受电场控制,在数据存储领域具有潜在的应用价值而备受关注。此外,铁电相的压电、热电和非线性光学特性在新能源、微电子和光学器件等领域也得到广泛开发。近年来,二维铁电材料作为神经形态突触器件领域的新型

光子拓扑自旋态研究新成果拓展光的拓扑学研究范畴

  拓扑缺陷在物理学上通常指场分布无法连续形变、物理量无法定义的特殊点,也称为奇点,在涡旋或拓扑结构中普遍存在。拓扑缺陷在宇宙学、流体动力学、空气动力学、声学以及生物学等领域也十分常见,并在某些应用中起着重要作用。  近年来,探索拓扑结构的电磁类比在光学和光子学中引起了极大兴趣。在集成光子学领域,微

首次在磁性拓扑绝缘体中观测到清晰的拓扑表面态

  近十几年来,拓扑绝缘体已经成为凝聚态物理领域的一个重要研究方向。对于Z2拓扑绝缘体,其拓扑性质受到时间反演对称性的保护。如果将Z2拓扑绝缘体的时间反演对称性破坏,会形成一类新的拓扑态,即磁性拓扑绝缘体。磁性拓扑绝缘体可以表现出一系列新奇的物理性质,例如量子反常霍尔效应、手性马约拉纳费米子、轴子绝

铁电和反铁电薄膜热开关领域获得重要进展

原文地址:http://news.sciencenet.cn/htmlnews/2023/12/514756.shtm

什么是铁电畴?

   为什么铁电体会有电滞回线?主要是因为铁电体是由铁电畴组成的。理想单畴铁电单晶体中,晶体内部所有区域的自发极化P全部指向同一方向,整个晶体将在内外部空间建立起电场。那么周围空间将储存相当大的静电能量,从能量角度来看,这种状态是不稳定的。因此,晶体中铁电相的自发极化总是会分裂成一系列极化方向不同的

什么是铁电畴?

为什么铁电体会有电滞回线?主要是因为铁电体是由铁电畴组成的。理想单畴铁电单晶体中,晶体内部所有区域的自发极化P全部指向同一方向,整个晶体将在内外部空间建立起电场。那么周围空间将储存相当大的静电能量,从能量角度来看,这种状态是不稳定的。因此,晶体中铁电相的自发极化总是会分裂成一系列极化方向不同的小区域

关于络合态铁测定的简介

  络合态铁测定,是指与有机质结合的铁铝络合物也是非晶质物质,广泛存在于各种土壤中。在测定土壤中与有机质结合的络合态铁的方法中,焦磷酸钠提取法是较为成熟,被广泛应用的方法。焦磷酸钠对络合态铁有较高的专性,而对各种含铁矿物的溶蚀较轻。  在碱性介质中,焦磷酸钠与土壤相互作用时,腐殖质及其铁衍生物与焦磷

拓扑世界“新交规”!我国学者提出新型类脑计算方案

7日,记者从南京大学获悉,该校物理学院缪峰教授、梁世军副教授团队联合南京理工大学程斌教授通过构筑特殊堆垛构型的魔角石墨烯器件,观测到电子型铁电性与拓扑边界态的共存,并基于可选择的准连续铁电开关,首次提出了噪声免疫的类脑计算方案,该工作为开发基于拓扑边界态的新型低功耗电子器件开辟了全新的技术路线。相关

陈刚教授团队拓扑保护边界态输运研究获进展

   近日,山西大学激光光谱研究所陈刚教授带领的团队与武汉大学刘正猷教授等合作,在拓扑边界态输运方面取得了重要进展。通过堆垛具有交错在位能的双层六角晶格,引入二聚型层间耦合,在国际上首次实验证实了基于铰链态的三维鲁棒输运。相关成果题为“3D Hinge Transport in Acoustic H

强磁场下拓扑超导材料电子态研究取得进展

  强磁场中心张昌锦课题组利用稳态强磁场实验装置的五号水冷磁体,在30特斯拉磁场强度和0.36K极低温条件下进行了精密的数据测量,对近期发现的潜在的拓扑超导材料PdTe2的电子结构进行了研究,得到了完美的强磁场振荡信号。该工作从磁性和电性两个方面给出了该体系中占主导地位的单带电子结构,这一结果对后期

铁电材料电滞回线的测量

  测量铁电材料电滞回线的方法通常有两种:冲击检流计描点法和 Sawyer-Tower电路法。第二种方法可用超低频示波器进行观察以及用xy函数记录仪进行记录,简便迅速,故人们常常采用。    采用Sawyer-Tower电路准静态测试铁电陶瓷材料电滞回线的测量原理图(GB/T6426-1999)如

铁电材料电滞回线的测量

   测量铁电材料电滞回线的方法通常有两种:冲击检流计描点法和 Sawyer-Tower电路法。第二种方法可用超低频示波器进行观察以及用xy函数记录仪进行记录,简便迅速,故人们常常采用。    采用Sawyer-Tower电路准静态测试铁电陶瓷材料电滞回线的测量原理图(GB/T6426-1999)

聚焦噪声免疫,拓扑世界有了“新交规”

,并基于可选择的准连续铁电开关,首次提出了噪声免疫的类脑计算方案。日前,相关研究成果发表于《自然—纳米技术》。电子在传统半导体材料中与拓扑量子材料中的传输方式,就如同行驶在杂乱的街道(左)和高速公路上(右)的车辆。课题组供图半导体芯片中最基本运算单元的工作机制依赖于电子的传输。传统材料中的电子传输会

北京理工大学团队在力学调控拓扑铁电畴研究中取得重要进展

  近日,北京理工大学王学云,洪家旺团队在力学调控拓扑铁电畴研究中取得重要进展,相关成果以“Mechanical Manipulation for Ordered Topological Defects”为题,发表于国际权威期刊Science Advances期刊。研究团队建立了一种残余应力的力学调

中科院物理所等在二维铋中发现单质铁电态

原文地址:http://news.sciencenet.cn/htmlnews/2023/4/498189.shtm铁电性是指在某些材料中表现出的一种自发电极化现象。这种极化可以通过施加外部电场进行翻转操作。由于铁电相可以受电场控制,在数据存储领域具有潜在的应用价值而备受关注。此外,铁电材料的压电、

铁电材料中电卡效应的制冷原理

  制冷是人们日常生活中必不可少的事情,从水果、蔬菜、肉类保鲜,到空调的使用,再到医用方面的器官冷藏、核磁共振成像等,都需要制冷。普通的压缩机制冷的方法已经差不多到了其极限,并且其排出的有机气体,直接破坏嗅氧层,引起了温室效应,对环境的破坏作用已越来越受到人们的重视。寻找新的制冷方式成为一项刻不容缓

新型二维铁电材料铁电畴结构的调控研究获进展

  铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小

研究揭示拓扑应变诱导的量子态调控摩擦机制

  7月6日,记者从中国科学院兰州化学物理研究所获悉,该所纳米润滑课题组首次在实验上观察到固—固界面量子摩擦现象,系统构建了电子、声子耗散与摩擦的内在关系,揭示了拓扑应变诱导的量子态调控摩擦机制。相关研究论文发表于《自然-通讯》。  摩擦本质和作用机制是摩擦学的基本科学问题,数百年来,科学家对这一难

白雪冬团队实现极性拓扑结构相变的原子尺度表征与调控

  近年来,科学家先后在理论和实验上发现了铁电材料中可以形成尺寸低至几个纳米的极性拓扑结构,如通量闭合畴、涡旋畴和斯格明子等。极性拓扑畴结构具有拓扑保护性、尺寸小等优势,这引起探索新一代非易失性超高密度信息存储器件的兴趣。实际器件操作大多是基于外场对结构单元极化态和拓扑相变的调控,研究单个铁电畴结构

有机铁电薄膜材料的介绍

  有机铁电薄膜的制备方法包括溶胶-凝胶法、旋涂法(Spin-Coating)、分子束外延技术及Langmuir-Blod-get膜技术等。与传统的无机材料相比,有机聚合物材料具有易弯曲、柔韧性好、易加工、成本低等优点而备受关注。作为一种新型的铁电体,铁电高分子聚合物的研究主要以聚偏氟乙烯(Poly

武汉物数所等发现磁性原子对拓扑电子态的影响

  拓扑材料因其新奇的表面态引起了人们广泛的关注。这种受时间反演对称性保护的相对论性拓扑电子态具有自旋手征性,因此在自旋电子学和量子计算方面有着巨大的应用前景。目前,许多实验和理论研究表明拓扑电子态在非磁散射下表面的时间反演对称性仍然保持。但磁散射下对称性是否发生破缺从而破坏拓扑材料表面态的性质仍存

万物皆可拓扑?物理学家发现奇妙拓扑态的材料俯拾皆是

  “脆弱拓扑”是一种新发现的量子现象,它可以让材料获得奇异且激动人心的性质。  材料中隐藏的数学越来越神奇了。物质的拓扑态(由于电子的“扭结”量子态所产生的奇异性质)从罕见的稀奇玩意变成了物理学最热门的领域之一。现在,理论物理学家意识到拓扑无处不在,并将其认定为固态物质形态中最重要的一环。扭开一个

物理所铁基超导材料拓扑性质研究取得进展

  铁基超导体和拓扑绝缘体是近年来凝聚态物理研究的热点问题。铁基超导体是非常规超导体,不同于传统的电声耦合机制的BCS超导体,其超导配对机制的解释仍然是凝聚态物理理论的一个难点;同时,不同于单带的铜基非常规超导体,铁基超导体的多带特性使其具有更丰富的电子结构。拓扑绝缘体的发现突破了人们对绝缘相的认识

科研人员在单一铁电陶瓷片表面开发出全光控五态逻辑门器件

多功能一体化的光电逻辑门(OLEGs)可快速实现信息处理和传输,在通讯技术、人工智能和计算系统等领域颇有潜力。具有差异性光电响应的光电探测器是OLEGs的重要组成部分。通常,传统的半导体光电探测器需要构建异质结构或结合多种光-电输入形式才能够实现差异化光电响应,增加了器件设计的复杂性。铁电材料是具有