青藏高原热融滑塌对高寒生态系统影响研究获进展

气候变暖和降水格局变化加速多年冻土退化,导致热融滑塌等热喀斯特地貌迅速扩张。热融滑塌通过改变土壤结构和水热条件,显著影响碳氮迁移过程、微生物群落结构及高寒生态系统功能,并增强土壤碳库释放、强化气候变暖的正反馈效应。热融滑塌调控土壤—植被反馈过程的路径机制尚不明确。中国科学院西北生态环境资源研究院研究团队在青藏高原腹地的北麓河和风火山地区选取4个典型热融滑塌区域,开展植被调查与土壤采样,同时监测生态系统总初级生产力(GPP),系统评估了热融滑塌对高寒生态系统土壤—植被—碳通量的影响。研究显示,青藏高原热融滑塌通过重塑地表微地形,触发了从土壤结构到生态系统功能的级联响应。热融滑塌使土壤容重增加、颗粒重排,改变近地表水分格局,并重新分配土壤有机碳和碱解氮,促进耐湿物种发育,推动群落由高寒草甸向高寒沼泽草甸演替。同时,热融滑塌还对生态系统功能造成显著影响,使植被被剥离区域的GPP下降约80%。偏最小二乘路径模型结果表明,热融滑塌主要通过......阅读全文

青藏高原热融滑塌对高寒生态系统影响研究获进展

气候变暖和降水格局变化加速多年冻土退化,导致热融滑塌等热喀斯特地貌迅速扩张。热融滑塌通过改变土壤结构和水热条件,显著影响碳氮迁移过程、微生物群落结构及高寒生态系统功能,并增强土壤碳库释放、强化气候变暖的正反馈效应。热融滑塌调控土壤—植被反馈过程的路径机制尚不明确。中国科学院西北生态环境资源研究院研究

青藏高原热融滑塌研究:揭示冻土退化对生态系统的级联影响机制

  青藏高原,被誉为“世界屋脊”,其广袤的多年冻土区孕育了全球独一无二的高寒生态系统。然而,近年来全球气候变暖与区域降水格局的显著变化,正加速这一脆弱生态区的多年冻土退化进程,导致热融滑塌等热喀斯特地貌快速扩张。  中国科学院西北生态环境资源研究院冰冻圈科学与冻土工程全国重点实验室蒋观利研究员团队的

北极班克斯岛热融滑塌数量30年增60倍

   英国《自然·通讯》杂志2日发表的一项气候研究报告显示,在北极班克斯岛上,热融滑塌的数量在1984年—2015年期间增加了60倍。研究指出,滑塌数量从1984年的63个,累计增加至2013年的最大值4077个。这项研究以及越来越多的证据表明,寒冷的连续多年冻土可能对夏季的极端气候非常敏感。  全

青藏科考:可可西里热喀斯特地貌发育明显

  记者2日从中国科学院西北生态环境资源研究院冻土工程国家重点实验室获悉,该实验室研究员林战举团队参与的青藏科考指,可可西里多年冻土呈现快速退化状态,并由此诱发大量的热喀斯特地貌发育。  可可西里是中国面积最大的无人区,也是青藏高原唯一一处世界自然遗产,目前被纳入中国面积最大的国家公园三江源国家公园

量化青藏高原碳平衡研究获进展

  碳在多圈层的积累和流动,受到学界关注。青藏高原被称为“亚洲水塔”,是水圈、冰冻圈、生物圈和大气圈多圈层体现最全的区域之一,独特的冰川、冻土、湖泊、河流和高寒湿地,为阐释陆表水体相关碳过程提供了理想场所。近日,中国科学院成都山地灾害与环境研究所西藏生态环境创新团队联合中科院西北生态环境资源研究院、

寒旱所揭示非贯穿型热喀斯特湖周围多年冻土特征

  热喀斯特是指由地下冰融化而造成的地面下沉和滑塌,又称热融。热喀斯特现象广泛分布在冰缘地区。热喀斯特可分为两种,即热融沉陷和热融滑塌。前者主要产生在平坦地面,冻土层内地下冰融化使地面发生沉陷,出现沉陷漏斗、浅洼地,如果洼地集水成湖,称热喀斯特湖,也称热融湖;后者主要发育在斜坡地面,由于坡地冻土层地

《自然》及子刊综览

  《自然—通讯》  加拿大北极地区滑坡加剧  《自然—通讯》发表的一篇论文显示,在加拿大北极群岛的班克斯岛上,热融滑塌的数量在1984年至2015年期间增加了60倍——热融滑塌是由多年冻土中的地下冰融化导致的滑坡。研究指出,滑塌数量从1984年的63个增加至2013年的最大值4077个。这项研究和

青藏高原热融湖塘可溶性有机质光微生物降解耦合机制

  热融湖塘是多年冻土融化后形成的典型地貌,也是重要的碳排放源。作为热融湖塘中最为活跃的碳库,可溶性有机质(DOM)降解过程在调节热融湖塘碳排放中起着关键作用。以往研究显示,DOM降解通常由光降解和微生物降解两个过程共同驱动。然而,目前热融湖塘DOM的光-微生物降解的耦合机制尚不清楚。  中国科学院

徐柏青小组:黑碳沉降导致青藏高原雪融加速

印度洋上空的污染物对亚洲喜马拉雅山脉的冰川融化负有直接责任——这是来自美国Scripps研究所的一个研究组的结论。这篇题为《棕色云增暖南亚》(Brown haze ‘heating up’ South Asia,《自然》2007年8月)的论文曾在学界引起轩然大波。中国科学家近年对青藏高原的冰芯研究进

青藏高原鸟类生态系统遭受气候变暖威胁

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500402.shtm青藏高原是全球生物多样性研究的热点区域,这里也是世界上高海拔地区生物多样性最高的地区。然而,气候变暖正在加速,青藏高原过去50年的变暖速度是全球平均水平的两倍,这一趋势不仅会对高原鸟类

青藏高原多年冻土区潜在融沉风险预估研究取得进展

原文地址:http://www.cas.cn/syky/202104/t20210406_4783779.shtml   多年冻土作为冰冻圈要素的重要组成部分在全球气候变化中的指示作用已被越来越多的研究证实。青藏高原(QTP)作为世界上中低纬度海拔最高、面积最大的多年冻土区,其多年冻土以高温、高含冰

冻融过程对青藏高原高寒草甸温室气体交换过程影响

  温室气体浓度升高引起的全球气候变暖是当今人类社会可持续发展面临的重大挑战。青藏高原既是全球变化的敏感区域,也是世界上低纬度冻土的集中分布区。春季土壤冻融交替是高原地区常见的自然现象,冻融交替不仅能够改变土壤的水热条件、理化性质,而且会显著影响温室气体地气界面交换过程。图:青藏高原典型高寒草甸甲烷

青藏高原“长高”如何影响东亚水循环及生态系统

  青藏高原生长是新生代最为波澜壮阔的造山运动,也是驱动东亚气候系统和生态环境演变的关键因素。近几十年来,不同学科从不同角度对其进行了深入研究,加深了关于新生代青藏高原生长对东亚气候系统、水汽循环和生态系统影响的了解,但是关于青藏高原地形地貌的演化还存在许多争议问题。  近日,中国科学院西双版纳热带

青藏高原“长高”如何影响东亚水循环及生态系统

青藏高原生长是新生代最为波澜壮阔的造山运动,也是驱动东亚气候系统和生态环境演变的关键因素。近几十年来,不同学科从不同角度对其进行了深入研究,加深了关于新生代青藏高原生长对东亚气候系统、水汽循环和生态系统影响的了解,但是关于青藏高原地形地貌的演化还存在许多争议问题。近日,中国科学院西双版纳热带植物园古

《科学通报》:高寒生态系统退化加速青藏高原碳流失

专家认为解决办法在于提高当地生物量和植被光合作用能力  气候变暖将导致土壤释放出大量的碳,碳排放又增强了全球变暖的趋势,从而形成恶性循环。青藏高原正是一个可能对气候变化产生影响的巨大碳库。我国科学家通过对青藏高原风火山地区高寒草地CO2排放通量的研究发现,随着退化程度的加剧,高寒草甸碳排放量逐渐提高

植物所揭示冻土融化背景下的生态系统碳磷交互作用

  作为植物生长的限制因素,土壤养分可利用性会调控陆地生态系统碳循环对全球变化的响应。特别是在冻土融化背景下,土壤养分可利用性对生态系统碳循环关键过程的调节作用,很大程度上影响着生态系统碳循环对气候变暖反馈关系的方向与强度。近年来,冻土生态系统碳-氮-磷交互作用逐渐引起学术界重视。其中较多关注土壤氮

研究揭示活动层不同冻融阶段土壤呼吸动态及其驱动机制

  青藏高原是中低纬度地带多年冻土分布面积最广的区域之一,土壤有机碳库高达160±87Pg,在全球气候变暖中具有重要作用。活性层作为多年冻土和大气之间的缓冲层,对全球气候变化的响应敏感且迅速,其水热过程是驱动多年冻土碳、氮循环和生物地球化学循环的原动力。目前,活动层不同冻融阶段如何调控土壤碳排放,及

滑坡把脉人:邱海军团队的坚守与情怀

邱海军团队在西藏羊卓雍措 邱海军在滑坡堰塞体上 邱海军团队在可可西里冻融滑塌现场  邱海军团队在可可西里冻融滑塌现场(图片均由受访者提供)   与西北大学邱海军教授的约访一开始并不算顺利,他在微信上发过来一条新闻报道:“突发!恢复通行1天后,再次停运!”原来是停运八个月后刚

科学家发现冻土融化促进生态系统磷循环

近日,中国科学院植物研究所研究员杨元合团队揭示了生态系统磷循环对冻土融化的响应及其关键驱动因素。相关研究成果发表于《自然-气候变化》(Nature Climate Change)。多年冻土区储存着全球近1/3的土壤有机碳,在陆地碳循环中起着至关重要的作用。特别是,气候变暖引起的冻土融化加速土壤碳释放

生态系统趋好-潜在风险增加-青藏高原科考首期成果发布

  青藏高原生态系统趋好的同时,潜在风险增加;亚洲水塔失衡,冰崩等新灾、巨灾频发;喜马拉雅山与冈底斯山隆升历史存在明显差异,导致新的生物演化模式——2017年启动的第二次青藏高原综合科学考察研究,9月5日在拉萨发布了首期成果。  第二次青藏高原综合科考首席科学家、中科院院士姚檀栋说,过去50年来,青

植物所发现热融塌陷加剧多年冻土区土壤呼吸对气候变暖的响应

多年冻土区经历了显著的气候变暖,其增温速率为全球平均值的2~4倍。气候变暖引起的冻土融化会导致多年冻土中长期封存的有机质被微生物分解,以CO2等温室气体的形式释放至大气,从而加剧气候变暖。作为剧烈的冻土融化形式,热喀斯特地貌约占北半球多年冻土区面积的20%。热喀斯特地貌形成会改变植被、土壤和水文等过

青藏高原北部首次发现干热岩资源

  一项名为《青海省贵德县扎仓沟地热与干热岩勘查实验研究》的地勘项目取得实质性进展:通过钻探,在位于青藏高原北部的青海省贵德县扎仓沟一带发现具一定开发利用前景的干热岩资源,这是我国地质工作者首次在青藏高原北部发现干热岩的资源。有关专家称,这一干热岩的资源的发现对我国能源发展具有重要意义。   干热

研究发现热融塌陷促进土壤微生物碳利用效率

  持续的气候变暖造成多年冻土大面积融化。作为剧烈的冻土融化形式,热融塌陷会在短时间内改变植被、土壤和水文等过程,从而影响土壤微生物及其介导的碳过程。微生物碳利用效率是指微生物将吸收的碳分配至自身生长的比例,在很大程度上决定土壤碳形成与损失之间的平衡关系。因此,解析土壤微生物碳利用效率对热融塌陷的响

我国学者揭示冻土环境中微生物和溶解性有机物相互作用

  冻土包含了大约50%全球土壤碳储量,全球气候变化造成的冻融坑的形成是下游水生生态系统溶解性有机质(DOM)的重要来源。冻土来源的DOM在向下游河流生态系统迁移转化过程中被微生物利用,同时影响微生物群落结构和功能。然而,目前冻融坑及其下游河流生态系统中DOM组成与微生物群落之间的相互作用尚未得到充

青藏高原132个湖泊近40年湖冰物候数据发布

近日,中国科学院空天信息创新研究院(空天院)、可持续发展大数据国际研究中心(SDG中心)内陆水环境遥感团队在湖冰物候大范围动态监测与模拟方面取得重要进展。研究团队利用遥感与数值模拟技术,重建了青藏高原132个湖泊1978—2016年逐年湖冰物候的完整记录。相关数据产品已同步发布在“国家青藏高原科学数

冻土突然解冻释放出大量碳

  全球约60%的土壤碳储存在多年冻土区,随着气候变暖促进土壤碳排放,多年冻土区域有可能因此成为一个巨大的碳源。当前的地球系统模式只模拟了冻土垂直水平上的缓慢融化,而没有考虑到冻土的突然解冻过程。冻土的突然解冻往往会导致地形地貌发生巨大改变,例如造成地面塌陷、快速侵蚀和崩塌,形成湖泊和湿地等。尽管只

新生代青藏高原生长对东亚水循环及生态系统的影响

青藏高原生长是新生代波澜壮阔的造山运动,也是驱动东亚气候系统和生态环境演变的关键因素。近几十年来,不同学科从不同角度对青藏高原生长开展了深入研究,深化了关于新生代青藏高原生长对东亚气候系统、水汽循环和生态系统影响的认知,但关于青藏高原地形地貌的演化存在争议,有待进一步研究。    中国科学院西双版纳

硝化反硝化耦合机制主导贫氮生态系统氧化亚氮脉冲排放

  土壤氮转化过程影响生态系统生产力及土壤氮素的损失途径和潜力,微生物硝化和反硝化过程产生氧化亚氮(N2O)释放到大气中,使土壤成为大气N2O的主要来源,一般认为施肥农田土壤是强排放源,自然土壤则为弱排放源。然而,温带至寒带自然生态系统在冬春转换期被广泛观测到脉冲式排放,导致自然土壤在全球N2O排放

冻土区成全球气候变化响应“敏感区”

青海省人民政府-北京师范大学高原科学与可持续发展研究院副教授陈哲所在团队最新研究显示,多年冻土区不但成为全球气候变化响应的“敏感区”,同时也使该区域成为加剧全球变暖的重要“驱动机”。 现有研究表明,以泛北极地区和青藏高原为代表的多年冻土区面积,约占北半球陆地面积的四分之一。而在低温作用下,冻土发

中科天融2011年展望:天融环保--无限美好

  中科天融(北京)科技有限公司是中节能集团和六合集团天融环保经营框架下的环保产业发展实体,主要从事烟气在线监测设备、水质在线监测设备及环境监控网络平台供应与运营服务。天融环保是国内最早从事在线监测系统集成与研究的企业之一,产品国内市场占有率领先,是业内中标省、市级污染源在线监测项目且成功运行范例最