NatCommun:氟化修饰方法实现高效安全的基因转染

华东师范大学生命科学学院、上海市调控生物学重点实验室程义云教授课题组的最新成果近期在线发表于Nature子刊《Nature Communications》 ,该成果提出的氟化修饰方法为高分子基因载体的设计提供了一个全新的思路。 程义云教授(右)与该成果第一作者博士生王铭明在实验室 基因载体的转染效率与细胞毒性 基因治疗(gene therapy)是现代医学和分子生物学相结合而诞生的新技术,利用分子生物学方法将目标基因通过载体导入患者体内,使之表达成目标蛋白,从而使疾病得到治疗。据程义云教授介绍,当前临床基因治疗的主要挑战在于缺乏高效、安全的基因载体,“基因载体的主要评价标准在于转染效率与细胞毒性”,即实现“高效与低毒”。 当前临床基因治疗采用的载体主要是病毒类载体,这类载体能实现高效基因转染。但是,病毒类载体存在免疫原性、遗传毒性等安全问题,无法大规模制备,且转染大尺寸核酸时效率较低。非病毒类载体......阅读全文

组蛋白修饰基因通路KDM5C基因

该基因是smcy同系物家族的成员,编码一个干旱区、一个jmjc区、一个jmjn区和两个phd型锌指蛋白。DNA结合基序表明该蛋白参与转录和染色质重塑的调节。这种基因的突变与X连锁精神发育迟滞有关。选择性剪接导致多个转录变体。

基因转染技术的DNA的准备介绍

  用于转染的质粒DNA必须无蛋白质,无RNA和其它化学物质的污染,OD260/280比值应在1.8以上。DNA的质量和纯度能影响某些细胞系的转染效率,可以通过CsCl梯度法或标准柱层析法进行纯化。

简述基因转染技术的表达和检测

  在筛选出转化子后还需要鉴定转导细胞中外源基因的表达状况。其中包括对目的基因和标记基因的鉴定。常用方法有原位杂交、Northern杂交、免疫组织化学染色等,原位及Northern杂交是检测外源基因转录出的mRNA,后者则是检测外源基因翻译出的蛋白质。

瞬时转染真核基因表达调控技术

调节瞬时转染基因的表达l      四环素作为哺乳动物细胞中可诱导基因表达的调控物阶段一:pTet-tTAk稳定转染成纤维细胞培养和转染细胞1.      在DMEM完全培养液中培养贴壁细胞。转染前一天,把细胞换到含有0.5μg/ml四环素-HCl(四环素)的DMEM完全培养液中。每个10 cm培养

瞬时转染真核基因表达调控技术

调节瞬时转染基因的表达*四环素作为哺乳动物细胞中可诱导基因表达的调控物阶段一:pTet-tTAk稳定转染成纤维细胞培养和转染细胞1. 在DMEM完全培养液中培养贴壁细胞。转染前一天,把细胞换到含有0.5μg/ml四环素-HCl(四环素)的DMEM完全培养液中。每个10 cm培养皿中加入足量细胞,使转

基因转染荧光试剂精准识别癌细胞

  日前在浙江杭州举行的“肿瘤早期诊断与个体化医疗新技术研讨会”上,纳奥生物医药有限公司首次发布基因转染荧光试剂,用来精准识别癌细胞,解决临床实践难题。基因转染荧光试剂克服了细胞毒性大、不适合体内转染、适用范围小等缺点,通过纳米影像技术特异识别肿瘤细胞,并通过将具有抑制

常用的基因转染技术病毒载体介绍

  1、逆转录病毒载体  逆转录病毒为RNA病毒,它们的基因组编码在一条单链RNA上,病毒进入细胞通过逆转录作用,病毒RNA即转变为双链DNA分子,DNA进入细胞核并整合在细胞染色体中,这种整合的病毒称为原病毒。在原病毒的两端各有一长末端重复序列(LTR),LTR内侧还有为复制所必需的其他顺序,包括

CHO细胞的稳定转染与基因表达

1、pcDNA3.1+-gD的线性化: pcDNA3.1+使用说明书推荐了以下几个酶作为线性化酶(BglⅡ MfeⅡ Bst1107Ⅰ Eam1105Ⅰ PvuⅠ ScaⅠ SspⅠ),通过DNAMAN分析gD序列发现其带有MfeⅡ酶切位点。2、转染前一天,在60mm的dish中接种8×105个细胞

基因电转染系统的技术革新

经过近30年的发展革新,电转染已成为基因的功能研究领域中不可或缺的技术手段。下文不仅是一篇新上市的转染仪器的介绍,更是电转染仪技术革新的介绍,因为:                                  NEPA21高效基因转染系统     ------拥有全球领先的ZL电脉冲芯片技术和

大麦基因编辑修饰淀粉研究获进展

近日,四川农业大学小麦研究所郑有良教授团队江千涛教授研究组利用CRIPR/Cas9技术对大麦淀粉合成酶基因SSIIa进行基因编辑,获得了高抗性淀粉大麦新种质,结合酶活、转录组和代谢组学阐明淀粉的特性变化机制,相关成果发表在国际著名学术期刊《碳水化合物聚合物》(Carbohydrate Polymer

筛选或验证RNA修饰直接靶点,研究RNA修饰靶基因的调控...

筛选或验证RNA修饰直接靶点,研究RNA修饰靶基因的调控机制技术简介用体外转录法标记生物素RNA探针,然后与胞浆蛋白提取液孵育,形成RNA-蛋白质复合物。该复合物可与链霉亲和素标记的磁珠结合,从而与孵育液中的其他成分分离。复合物洗脱后,通过Western Blot检测特定的RNA结合蛋白是否与R

如何将基因转染到肝星状细胞

基因转染的定义是“将具生物功能的核酸转移或运送到细胞内并使核酸在细胞内维持其生物功能”。其中,核酸包括DNA(质粒和线性双链DNA),反义寡核苷酸及RNAi(RNA interference)。基因转染技术已广泛应用于基因组功能研究(基因表达调控,基因功能,信号转导和药物筛选研究)和基因治疗研究。

全球首发“基因转染荧光试剂”-瞄准癌细胞

4月18日,“癌症早期诊断与个体化医疗新技术研讨会暨2010纳奥生物产品发布会”在浙江杭州举行,纳奥生物全球首家出产的“基因转染荧光试剂和系列纳米荧光探针产品”正式上市,并现场给多家全国知名医疗机构赠送了试用品。   恶性肿瘤是严重危害人类生命和健康的常见病和多发病,据了解,在35~59岁年龄组中,

外源基因人工转化转染的方法

将外源基因导入生物体的过程称为转化。这可以自然发生,也可以人为发生。人工转化转染方法包括:(a)化学方法,有磷酸钙沉淀法、DEAE -葡聚糖络合和脂质介导的DNA转化法;(b)物理方法,包括电穿孔、微注射和基因枪法;(c)重组法,比如利用病毒作为载体。

基因转染技术的非病毒方法运载介绍

  1、化学转染法  (1)DEAE-葡聚糖和polybrene聚阳离子法:带正电的DEAE-葡聚糖或polybrene多聚体复合物和带负电的DNA分子使得DNA可以结合在细胞表面。通过使用DMSO或甘油获得的渗透休克将DNA复合体导入。DEAE-葡聚糖仅限于瞬时转染。  (2)磷酸钙共沉淀法 :将

转染实验常用的报告基因(植物、动物)

报告基因(reporter gene)是一种编码可被检测的蛋白质或酶的基因,是一个其表达产物非常容易被鉴定的基因。把它的编码序列和基因表达调节序列相融合形成嵌合基因,或与其 它目的基因相融合,在调控序列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控,筛选得到转化体。

基因共转染的概念和方法介绍

基因工程中将两个以上的基因同时导入感受态真核细胞的方法,称作共转化(cotransformation,也称共转染)。将目的基因表达载体DNA 和标记基因表达载体DNA 混合后共同转移到靶细胞中,分别使用标记基因与目的基因对应的选择剂进行两次筛选,最后可得到复合转导的转化子。在磷酸钙沉淀物中,两种物理

转染

细胞传代(1) 试验准备:200ul/1mlTip头各一盒(以上物品均需高压灭菌),酒精棉球,废液缸,试管架,微量移液器,记号笔,培养皿,离心管。(2) 弃掉培养皿中的培养基,用1ml的PBS溶液洗涤两次。(3) 用Tip头加入1ml Trypsin液,消化1分钟(37。C,5%CO2 )。用手轻拍

组蛋白修饰分工调控基因表达水平和基因表达噪音

  基因表达过程依赖于转录因子、染色质调控因子和染色质等生物大分子在布朗运动过程中的随机碰撞,因此,即使是基因型和分化类型完全相同的细胞在相同环境下也存在基因表达的差异,被称为基因表达噪音。研究基因表达噪音,对研究干细胞增殖分化、个体发育、病原菌的抗药性以及农作物的稳产有着重要的意义,而其在人类早期

细胞转染电穿孔转染法

电流能够可逆地击穿细胞膜形成瞬时的水通路或膜上小孔促使DNA分子进入胞内,这种方法就是电穿孔。当遇到某些脂质体转染效率很低或几乎无法转入时建议用电穿孔法转染。一般情况下,高电场强度会杀死50%-70% 的细胞。现在针对细胞死亡开发出了一种电转保护剂,可以大大的降低细胞的死亡率,同时提高电穿孔转染效率

细胞转染脂质体转染法

阳离子脂质体表面带正电荷,能与核酸的磷酸根通过静电作用,将DNA分子包裹入内,形成DNA脂复合物,也能被表面带负电的细胞膜吸附,再通过融合或细胞内吞进入细胞。脂质体转染适用于把DNA转染入悬浮或贴壁培养细胞中,是目前实验室最方便的转染方法之一,其转染率较高,优于磷酸钙法。由于脂质体对细胞有一定的毒性

转染和转染效率测定步骤

LIPOFECTAMINE 2000转染试剂转染步骤此实验步骤设计用来进行24孔板贴壁细胞的瞬时或稳定转染,其为设计用来在生长培养基中直接加入复合物。1. 转染前一天,胰酶消化细胞并计数,细胞铺板,使其在转染日密度为90%。细胞铺板在0.5ml含血清,不含抗生素的正常生长的培养基中。2. 对于每孔细

基因修饰让玉米无壳且美味

   科学家表示,今天的玉米之所以长成现在的样子是因为该作物的基因发生了一种小变化。大约在距今9000年前,墨西哥人利用野生墨西哥类蜀黍培育出了玉米,那时的玉米粒被一层坚硬的外壳包裹着,使其不适宜人类食用。数十年来,科学家一直在研究野生苞谷如何生长成现在人们食用的玉米。  现在,一项遗传学领域的新研

DNA修饰SMARCD1基因信号通路介绍

该基因编码的蛋白质是SWI / SNF蛋白质家族的成员,其成员具有解旋酶和ATPase活性,被认为可以通过改变那些基因周围的染色质结构来调节某些基因的转录。 编码的蛋白质是大型ATP依赖的染色质重塑复合体SNF / SWI的一部分,并且与酵母Swp73蛋白具有序列相似性。 已经发现该基因的两个编码不

DNA修饰ERCC2基因信号通路介绍

核苷酸切除修复途径是修复DNA损伤的机制。该基因编码的蛋白参与转录偶联核苷酸切除修复,是基础转录因子btf2/tfiih复合物的一个不可分割的成员。该基因产物具有ATP依赖性DNA解旋酶活性,属于解旋酶的RAD3/XPD亚家族。这种基因的缺陷可导致三种不同的疾病,即癌症易发综合征着色性干皮病互补组D

DNA修饰MEN1基因信号通路介绍

这个基因编码脑膜,一种与多发性内分泌肿瘤1型综合征相关的假定的肿瘤抑制因子。体外研究表明,脑膜定位于细胞核,具有两种功能性核定位信号,并通过JUND抑制转录激活,但这种蛋白的功能尚不清楚。在Northern blots上检测到两条信息,但未对较大的信息进行描述。选择性剪接导致多个转录变体。

基因修饰让玉米无壳且美味

   本报讯 科学家表示,今天的玉米之所以长成现在的样子是因为该作物的基因发生了一种小变化。大约在距今9000年前,墨西哥人利用野生墨西哥类蜀黍培育出了玉米,那时的玉米粒被一层坚硬的外壳包裹着,使其不适宜人类食用。数十年来,科学家一直在研究野生苞谷如何生长成现在人们食用的玉米。  现在,一项遗传学领

基因编辑技术成功精确修饰人类T细胞

  美国加州大学旧金山分校的研究小组利用基因编辑技术CRISPR/Cas9精确修饰了人类T细胞。由于T细胞在人体免疫系统中作用十分重要,这一研究成果将为治疗糖尿病、艾滋病及癌症等提供全新的手段。  CRISPR/Cas9是最新出现的一种由RNA指导的Cas9核酸酶对靶向基因进行编辑的技术。新的方法能

DNA修饰MED12基因信号通路介绍

转录的启动部分受称为预启动复合物的大型蛋白质装配的控制。 这种预启动复合体的一个组成部分是一个称为Mediator的1.2 MDa蛋白聚集体。 该介体组分与包含该基因编码的蛋白质,介体复合物亚基12(MED12)以及MED13,CDK8激酶和细胞周期蛋白C的CDK8亚复合体结合。 和重新激发率。 M

DNA修饰EWSR1基因信号通路介绍

该基因编码一种多功能蛋白,参与多种细胞过程,包括基因表达、细胞信号传导、RNA加工和转运。该蛋白包括一个N末端转录激活域和一个C末端RNA结合域。该基因与编码转录因子的各种基因之间的染色体易位导致参与肿瘤发生的嵌合蛋白的产生。这些嵌合蛋白通常由该蛋白的N末端转录激活域与转录因子蛋白的C末端DNA结合