中英科学家石墨烯研究获突破有望快速将海水淡化成饮用水
中国科学技术大学教授吴恒安、博士王奉超与诺贝尔物理学奖得主、英国曼彻斯特大学安德烈・海姆教授课题组合作,近期在石墨烯材料研究方面取得突破,有望实现海水的迅速淡化与净化。 石墨烯以独特的力学和电学特性被称为“神奇材料”,但其与水的相互作用却让人困惑:石墨烯表面排斥水,但浸入到水中的石墨烯薄膜毛细通道却允许水快速渗透。 中国科技大学近代力学系教授吴恒安与英国曼彻斯特大学学者长期合作研究,最新发现表明,水环境中的氧化石墨烯薄膜与水相互作用后,会形成约0.9纳米宽的毛细通道,允许直径更小的离子或分子快速通过,而直径大于0.9纳米的离子被完全阻隔。也就是说,氧化石墨烯薄膜具有“快速精密筛选离子”的性能。 吴恒安教授课题组采用理论分析和分子模拟方法,研究了石墨烯纳米通道快速过滤离子的机理。他们的计算机模拟研究表明,石墨烯与离子之间的相互作用使离子在纳米通道中聚集,从而促进了离子的快速扩散。这一发现......阅读全文
石墨烯量子点领域研究获系列进展
石墨烯量子点、碳点等零维碳纳米材料以其独特的光学、电学性质,在近年来受到了广泛关注,然而sp2-sp3混合杂化碳纳米结构带来的复杂体系使得该类材料的光致发光机制研究面临挑战。目前研究手段分为控制变量实验归纳与机器学习分析两种。然而,控制变量归纳方法难以得到描述构效关系的精确数学模型。另一方面,通过机
岛津石墨烯研究表征解决方案
石墨烯是碳的同位素异形体大家族成员之一,作为由单层碳原子构成的蜂窝状二维原子晶体材料,石墨烯拥有优异的特性,理论上讲,它是目前已知导电性和导热性最好的材料,也是理想的轻质高强材料,其可能会创造一个全新的产业,自2004年被发现以来,石墨烯已经成为基础科学研究的热点材料。结构决定性质,石墨烯结构和物性
英国石墨烯研究教训:重研究轻应用难以成器
家家有本难念的经。曾因2004年诞生石墨烯诺贝尔奖科研成果而声名鹊起的英国曼彻斯特大学(简称曼大),如今由于其国家石墨烯研究院(NGI)不能把有关石墨烯研究成果市场化,遭到英国国会质询,指其滥用知识产权及浪费物资,从而被推至风口浪尖。 事情虽然起起伏伏,貌似热闹,却暴露出英国石墨
英国石墨烯研究教训:重研究轻应用难以成器
家家有本难念的经。曾因2004年诞生石墨烯诺贝尔奖科研成果而声名鹊起的英国曼彻斯特大学(简称曼大),如今由于其国家石墨烯研究院(NGI)不能把有关石墨烯研究成果市场化,遭到英国国会质询,指其滥用知识产权及浪费物资,从而被推至风口浪尖。 事情虽然起起伏伏,貌似热闹,却暴露出英国石墨烯行业一些问题
石墨烯表征手段
石墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM扫描电子显微镜、SEM和原子力显微分析AFM为主而图谱类则以拉曼光谱Raman红外光谱IRX射线光电子能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜一般用来判断石墨烯的层数而IRX、XPS和UV则可
石墨烯怎么制作
石墨烯制作方法:一、机械剥离法机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构。2004年,英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法。二、氧化还原法氧化还原法是通过使用硫酸、硝酸
石墨烯和石墨的区别,联系
石墨烯和石墨的区别如下:一、性质不同1、石墨烯:一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。2、石墨:是碳的一种同素异形体。二、用处不同1、石墨烯:具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料
打开石墨烯带隙,开启石墨烯芯片制造领域大门
天津大学纳米颗粒与纳米系统国际研究中心的马雷教授团队攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,在保证石墨烯优良特性的前提下,打开了石墨烯带隙,成为开启石墨烯芯片制造领域大门的重要里程碑。该研究成果论文《碳化硅上生长的超高迁移率半导体外延石墨烯》1月3日在线发表于国际期刊《自然》。 据介
中国首家石墨烯上市企业诞生-石墨烯产业“梦之队”崛起
2014年11月12日,常州第六元素材料科技股份有限公司在北京成功进入“新三板”上市,成为国内首家石墨烯上市企业。 2013年2月,诺奖得主康斯坦丁·诺沃肖洛夫爵士在中国国务院发展研究中心,接受江南石墨烯研究院名誉理事长冯冠平馈赠由中国制造的全球首款石墨烯触屏手机。 ■创新驱动发展 “这
研究发现低温等离子体处理氧化石墨烯可提高抗菌能力
近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所黄青课题组、等离子体物理研究所王奇课题组合作,利用低温等离子体处理氧化石墨烯,发现处理后的氧化石墨烯的灭菌能力显著提高。 石墨烯作为一种新型二维碳材料,在多个生物医学领域都显示出巨大应用前景。但与抗生素、银等其他传统
研究发现低温等离子体处理氧化石墨烯可提高抗菌能力
近日,中国科学院合肥物质科学研究院技术生物与农业工程研究所黄青课题组、等离子体物理研究所王奇课题组合作,利用低温等离子体处理氧化石墨烯,发现处理后的氧化石墨烯的灭菌能力显著提高。 石墨烯作为一种新型二维碳材料,在多个生物医学领域都显示出巨大应用前景。但与抗生素、银等其他传统灭菌药物/材料相比,
Nature:氧化石墨烯膜通过阳离子控制层间距实现离子筛分
中国科学院上海应用物理研究所方海平、Jingye Li、上海大学吴明红团队、南京工业大学金万勤团队(共同通讯)等人使用K +,Na+,Ca2+,Li+或Mg2+离子显示了利用阳离子控制层间距精确订装氧化石墨烯膜,表现出优异的离子筛分和海水淡化性能。此外,由一种类型阳离子控制的膜间距可以有效地选择
石墨烯等离子超介质可使药检达单分子水平
据物理学家组织网1月14日(北京时间)报道,一个由英国曼彻斯特大学和法国艾克斯—马赛大学人员组成的研究小组,开发出一种新型的等离子超介质探测设备,利用了奇点光学中超常相位拓扑的性质,能通过简单的光学系统就看到单个分子,并在几分钟内分析出它的成分,药物检测精确度提高了3个数量级,可用于人体药检、机
中外合作发现氧化石墨烯薄膜离子筛选效应
记者日前从中国科学技术大学获悉,该校教授吴恒安与诺奖得主、英国曼彻斯特大学教授安德烈·海姆合作,发现氧化石墨烯薄膜具有精密快速筛选离子的性能。相关成果近期发表于《科学》杂志。 据介绍,石墨烯表面本来是排斥水的,但浸入到水中后,石墨烯薄膜里的毛细通道却允许水的快速渗透。此次研究人员发现,水环
首款石墨烯基锂离子电池研发成功
7月8日,世界首款石墨烯基锂离子电池产品在京发布。专家认为,该产品的研发成功,彻底打开了石墨烯在消费电子锂电池、动力锂电池以及储能领域锂电池的应用空间。 首款石墨烯基锂离子电池产品由上市公司东旭光电的子公司上海碳源汇谷推出,并命名为“烯王”。该产品性能优良,可在-30℃—80℃环境下工作,电池
分析石墨烯电池无法取代锂离子电池的原因
锂离子电池的内部阻抗高。因为锂离子电池的电解液为有机溶剂,其电导率比镍镉电池、镍氢电池的水溶液电解液要低得多,所以,锂离子电池的内部阻抗比镍镉、镍氢电池约大11倍。如直径为18mm、长50mm的单体电池的阻抗大约达90m。 除此之外,锂离子电池工作电压变化较大。比如电池放电到额定容量的80%时
中外合作发现氧化石墨烯薄膜离子筛选效应
记者日前从中国科学技术大学获悉,该校教授吴恒安与诺奖得主、英国曼彻斯特大学教授安德烈·海姆合作,发现氧化石墨烯薄膜具有精密快速筛选离子的性能。相关成果近期发表于《科学》杂志。 据介绍,石墨烯表面本来是排斥水的,但浸入到水中后,石墨烯薄膜里的毛细通道却允许水的快速渗透。此次研究人员发现,水
石墨烯作为锂离子电池负极材料的优缺点
随着研究的不断发展,高性能锂电电极材料层出不穷。石墨烯的高导电性、高导热性、高比表面积、等诸多优良特性,一定程度上对解决该问题有着非常重要的理论和工程价值。石墨烯直接储锂的优点:1) 高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达700~2000 mAh/g;2) 高充放电速率:
石墨烯作为锂离子电池负极材料的优缺点
但石墨烯材料直接作为电池负极仍然存在一些缺点,包括:1)制备的单层石墨烯片层极易堆积,比表面积的减少使其丧失了部分高储锂空间;2)首次库伦效率低,一般低于 70%。由于大比表面积和丰富的官能团,循环过程中电解质会在石墨烯表面发生分解,形成SEI 膜;同时,碳材料表面残余的含氧基团与锂离子发生不可逆副
石墨烯作为锂离子电池负极材料的优缺点
随着研究的不断发展,高性能锂电电极材料层出不穷。石墨烯的高导电性、高导热性、高比表面积、等诸多优良特性,一定程度上对解决该问题有着非常重要的理论和工程价值。石墨烯直接储锂的优点:1) 高比容量:锂离子在石墨烯中具有非化学计量比的嵌入?脱嵌,比容量可达700~2000 mAh/g;2) 高充放电速率:
单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。 目前,多数研究采用机械剥离和逐层转
MIT研究人员开发THz级石墨烯芯片
美国麻省理工学院(MIT)的研究人员们透过在两层铁电材料(行情 专区)间夹进高迁移率的石墨烯薄膜,从而实现可直接在光讯号上操作的太赫兹(terahertz;THz)级频率晶片。 根据麻省理工学院,这种新材料堆叠可望带来比当今密度更高10倍的记忆体,并打造出能直接在光讯号上操作的电子元件
英国曼彻斯特大学石墨烯磁性控制最新研究
近日,曼彻斯特大学Irina Grigorieva博士领导的科研团队在Nature Communications上发表研究,揭示了如何利用石墨烯制造初级磁矩并自如地控制其开关转换。 磁性材料与现代社会的方方面面都息息相关,它们在含有微型磁性元件的电子工具,诸如硬盘、存储芯片和传感器中都
石墨烯晶界输运性质研究取得系列进展
以石墨烯为代表的二维原子晶体材料的准粒子(如激子、狄拉克费米子等)由于量子限域效应,显示出室温量子霍尔效应等新奇量子特性,也促进了相关新型电子、光电子器件的应用等相关研究。获得本征的电学输运特性、光电特性等物理性质乃至最终的器件应用的关键在于大面积、高质量样品的生长。近年来,中国科学院物理研究所
石墨烯基功能材料研究获新进展
如何实现在纳米尺度上精细调控石墨烯基本结构单元的物理化学性质,并基于自组装策略,实现孔隙结构高度发达且内部织构独特的功能化石墨烯及其复合材料的可控构筑,是一个富有挑战性的难题。 日前,大连理工大学教授邱介山研究小组以镍钴基氢氧化物纳米线和2D石墨烯为前驱体,基于柯肯达尔效应的阴离子交换策略,通
纳米中心石墨烯相变研究取得新进展
近日,国家纳米科学中心的方英课题组发展了一种新颖的,可以直接、实时观测石墨烯在聚合物中相变的方法。他们巧妙地把Pristine石墨烯夹心在只有几百个纳米厚的聚合物基质中。当体系温度高于聚合物的玻璃化温度时,石墨烯开始发生卷曲,而且这种相变不可逆。更有趣的是,石墨烯还可以主动折叠成双层/三层结构,
石墨烯等一系列研究取得进展
石墨烯独特的结构蕴含丰富且新奇的物理,不仅为基础科学提供了重要的研究平台,而且在电子、光电子、柔性器件等领域显现出广阔的应用前景。为了充分发挥石墨烯的优异性质并实现其工业生产与应用,须找到合适的材料制备方法,使制备出的石墨烯能够同时满足大面积、高质量、与现有的硅工艺兼容等条件。截至目前,大面积、
新研究发现改进石墨烯材料性能的途径
一项新研究发现,石墨烯的纯度问题可能是限制这种新材料广泛应用的一个障碍。减少石墨烯中的硅污染有望提升其性能表现,充分发挥石墨烯在工业界的应用潜能。 石墨烯是从石墨材料中分离出来的、由一层碳原子组成的二维材料。它具有轻薄、强韧、导电和导热效率高等性能,是被工业界寄予厚望的新一代材料。但石墨烯的实
转角石墨烯有效模型理论研究取得进展
去年,《自然》杂志接连发表了两篇关于转角石墨烯的文章,指出将两层单层石墨烯材料,扭转到特殊的角度,并辅以电场调控载流子浓度,体系在低温下可以产生超导现象,这一发现激起了世界范围内研究转角石墨烯系统的热潮。目前该领域还处于方兴未艾阶段,很多实验观测没有公认的理论解释。比如在系统处在电中性时,原本导
新型石墨烯纳米抗菌材料研究获进展
近日,美国化学会ACS Nano杂志报道了中国科学院上海应用物理研究所物理生物学实验室在新型石墨烯纳米抗菌材料方面的研究工作(Graphene-Based Antibacterial Paper. Wenbing Hu, Cheng Peng, Weijie Luo, Min Lv