LESA纳喷雾质谱新技术:全球600家顶尖实验室的共同选择
2014年5月13日,《液滴萃取表面分析:新颖的质谱分析工具》技术研讨会在中国医学科学院药物研究所举办,中国医学科学院药物研究所的贺玖明副研究员主持了本次会议,来自美国Advion公司的产品经理Daniel Eikel博士在会上介绍了质谱分析的新工具——液体萃取表面分析(LESA)和基于芯片的多通道纳升电喷雾离子源(TriVersa NanoMate®),华质泰科生物技术(北京)有限公司首席技术官的刘春胜博士介绍了原位电离质谱、实时直接分析在药物分析及临床检验中的应用。来自各高校院所的专家、老师齐聚一堂,共同探讨这项新技术。中国医学科学院药物研究所的 贺玖明副研究员美国Advion公司的产品经理 Daniel Eikel博士华质泰科生物技术(北京)有限公司首席技术官 刘春胜博士TriVersa NanoMate® 芯片纳喷机器人离子源TriVersa NanoMate®离子源 TriVersa Nano......阅读全文
液质联用质谱图怎么分析
质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列
液质联用质谱图怎么分析
质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列
什么是质谱,质谱分析原理
质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质量是物质的固有特征之一,不同的物质有不同的质量谱——质
液质联用质谱图怎么分析
质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列
液质联用质谱图怎么分析
在质谱图中,横坐标表示离子的质荷比(m/z)值,从左到右质荷比的值增大;纵坐标表示离子流的强度,通常用相对强度来表示,即把最强的离子流强度(响应)定为100%,其它离子流的强度以其百分数表示。一般响应最高的为化合物的分子离子峰。通常,正离子模式下为M+H;负离子模式下为M-H
液质联用质谱图怎么分析
质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列
液质联用质谱发展史
液质联用质谱发展史早在19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备。世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson(1906年诺贝尔物理学奖获得者、英国剑桥
液质联用质谱图怎么分析
质谱分析是先将物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。质谱的样品一般要汽化,再离子化。不纯的样品要用色谱和质谱联用仪,是通过色谱进样。即色谱分离,质谱是色谱的检测器。离子在电场和磁场的综合作用下,按照其质量数m和电荷数Z的比值(m/z,质荷比)大小依次排列
实验分析仪器有机质谱仪离子源简介及离子化方式分类
由于质谱原理所限,质谱只能检测带电离子。离子源作为质谱中产生离子的重要装置,也被称为质谱的“心脏”。20世纪40年代,为适应有机物检测的需要,质谱工作者努力开发新的离子源,促进了离子化技术的迅猛发展。到近代,质谱仪不仅在生命科学领域,也在医学、环境科学、药物学等领域得到了广泛的应用。目前,随着离子化
安捷伦科技:LabonaChip技术的领先者
2010年10月18日, 2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议在上海复旦大学复宣大酒店隆重召开。安捷伦科技有限公司作为本次会议的金牌赞助商,在会议上展出了其基于微流控芯片技术的相关产品,技术部CHAN Jimmy先生在大会上
济南微纳Winner311XP喷雾激光粒度分析仪简介
产品简介: Winner311XP是专门针对小型喷雾设备雾滴粒度测试设计开发的台式喷雾激光粒度仪,融合了包括镜头保护装置在内的多项独创ZL技术,能够对分散在空气中的雾滴、液滴进行不接触测量,适用范围主要有医疗雾化器、雾化药品、各种气雾剂、喷雾剂等小型喷雾设备的雾滴检测。尤其适用于国家药典中对
济南微纳Winner311XP喷雾激光粒度分析仪参数
技术参数:规格型号Winner311XP执行标准ISO13320:2009,GB/T19077-2016,Q/0100JWN001-2013仪器结构一体式测试范围0.1-100μm探测器通道数60准确性误差
苏州纳微江必旺,纳谱刘晓东:创造中国色谱“芯”
“打破国际垄断”是很多行业的心声,这其中也包括生化、分析检测领域。在第九届慕尼黑上海分析生化展(Analytica China 2018)现场,采访了纳微科技和纳谱分析两家专注于色谱填料、层析介质的高新技术企业,聆听了他们专注“本土创新、赶超国际水平”的历程。苏州纳微科技股份有限公司董事长江
真空质谱计简介
利用质谱学原理测量真空系统或真空器件中残余气体成分或分压强的仪器,又称分压强计。真空质谱计一般由离子源、质量分析器和离子检测器三个部分组成。被分析的样品在离子源中被电离成离子,离子经离子光学系统后以一定初始条件进入质量分析器,按质荷比进行分离,最后由离子检测器接收,并测量其强度,从而得到相应的质
质谱检测是什么
质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离
质谱检测是什么
质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性
原子质谱的概念
原子质谱(AMS):原子质谱(AMS)又称为无机质谱法,是将试样原子化后采用各种离子源使其离子化,按质荷比不同而进行分离检测的方法,广泛用于各种试样中元素的定性和定量检测。
氦质谱检漏方法
氦质谱检漏技术是真空检漏领域里不可缺少的一种技术,由于检漏效率高,简便易操作,仪器反应灵敏,精度高,不易受其他气体的干扰,在电阻炉检漏中得到了广泛应用。氦质谱检漏仪是根据质谱学原理,用氦气作示漏气体制成的气密性检测仪器。由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成。质
氦质谱检漏方法
氦质谱检漏技术是真空检漏领域里不可缺少的一种技术,由于检漏效率高,简便易操作,仪器反应灵敏,精度高,不易受其他气体的干扰,在电阻炉检漏中得到了广泛应用。氦质谱检漏仪是根据质谱学原理,用氦气作示漏气体制成的气密性检测仪器。由离子源、分析器、收集器、冷阴极电离规组成的质谱室和抽气系统及电气部分等组成
如何读质谱图
用二维方法来看.1,横坐标代表的是分子离子峰及碎片峰,这有助于你判断物质的分子量及可能的主要结构.2,纵坐标代表的是分子碎片的稳定程度,这有助于你判断碎片相近的物质区分,比如可以通过质谱图直接判断二甲苯的三种构型,就是利用这个方法.3,结合二者的各自优势,再多学多比较记住几个特征峰就好办多了,比如烯
怎样看懂质谱图
做质谱图是要用高能粒子轰击待测化合物,那么出现分子被轰走一个电子时最容易(轰断化学键当然难些),那么质谱仪测出质荷比m/q最大时得到的谱线对应的数值即是待测化合物的相对分子质量。
离子阱质谱简介
离子阱质谱(ITMS)是利用高电场使质谱进样端的毛细管柱流出的液滴带电,在氮气气流的作用下,液滴溶剂蒸发,表面积缩小,表面电荷密度不断增加,直至产生的库仑力与液滴表面张力达到雷利极限,液滴爆裂为带电的子液滴,这一过程不断重复使最终的液滴非常细小呈喷雾状,这时液滴表面的电场非常强大,使分析物离子化
质谱检测是什么
质谱检测是一种与光谱并列的谱学方法。质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理Joseph John Thomson是使试样中各组分在离
如何选择质谱类型?
如何选择质谱类型: 很多从事分析的实验室小伙伴们都经常会用到气相和液相色谱,但对质谱却鲜少使用,所以在选择在质谱时就会有诸多的疑问,有经验的人会告诉他们三重四级杆只能定量,QTRAP既能定性又能定量,QTOF只能定性,而且质谱图的解谱需要建立在一定工作经验的基础上等等。 其实,在大家的印象中
质谱的特征碎片
我倒觉得特征峰很难记的住,而且不是很有用。我一般关注中性丢失,比如看整体丢失是14n 还是14n-2,甚至19、35。不知道你是哪里的学生,那次我去北大做质谱,人家还给我电脑查出来的分子图,挺准的。只要你的东西很纯,一般那个电脑可以猜得很准。我估计很多比较新的仪器都有这个。
全自动临床质谱
LC-MS/MS作为一种高效高质的分析技术,广泛应用于临床检测,包括治疗药物监测(TDM)、维生素、内分泌代谢组学、新生儿筛查、激素以及蛋白质组学等新兴领域。LC-MS/MS作为关键技术,许多临床实验室已将其替代了其他方法学。传统方法学比如免疫分析法测定小分子化合物会受到很多限制,比如特异性问题、不
质谱分辨率
质谱分辨率的定义◇质谱分辨率的物理意义◇单位质量分辨率
质谱图的组成
质谱图由横坐标、纵坐标和棒线组成。横坐标标明离子质荷比(m/z)的数值,纵坐标标明各峰的相对强度,
什么是原子质谱
原子质谱(AMS):原子质谱(AMS)又称为无机质谱法,是将试样原子化后采用各种离子源使其离子化,按质荷比不同而进行分离检测的方法,广泛用于各种试样中元素的定性和定量检测。
质谱技术及其应用
21世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,即蛋白质组学时代。正如基因草图的提前绘制得益于大规模全自动毛细管测序技术一样,后基因组研究也将会借助于现代生物质谱技术等得到迅猛发展。本文拟简述生物质谱技术及其在生命科学领域研究中的应用。1