离子置换方法制备出超级电容器新材料

近日,记者从郑州大学了解到,该校化学与分子工程学院副教授陈卫华博士带领的课题组,在国家自然科学基金和河南省教育厅基础研究计划等项目支持下,率先利用部分离子置换的方法制备出高性能硫化物超级电容器电极材料,相关研究成果发表在最近一期由美国化学会主办的《材料化学期刊》上。 据悉,与传统电容器相比,超级电容器具有许多不可替代和不可或缺的优势,如充放电速率快、循环寿命长、能量转化效率高、操作稳定、小尺寸、无污染等,是一种非常有前途的能量贮存设备。 陈卫华带领的课题组首先成功地合成了以窝状纳米带作为基本组成单元的三维分等级鸟巢状二硫化三镍与硫化镍电极材料,然后分别将阴离子硒离子和阳离子钴离子引入到鸟巢状二硫化三镍与硫化镍复合材料中,制备出具有与母体材料相似形貌的二硫化三镍与八硫化九钴和硫化镍与二硒化镍复合电极材料。同时,课题组还在这个过程中成功地将材料组分进行了调控,并且实现了形貌遗传。 测试显示,离子置换前后电极材料的倍率性能和......阅读全文

三方联手开发第二大硫化镍钴矿

  日前,国家电投集团黄河上游水电开发公司、青海省地质矿产开发局、金川集团公司三方在青海西宁举行合作协议签约仪式,共同开发中国第二大硫化镍钴矿——夏日哈木镍钴矿。  2010年,青海省地矿局首次在柴达木盆地南缘探明了夏日哈木镍钴矿。该矿位于格尔木市,是全球近20年来发现的最大硫化镍钴矿床,成为近年来

锂电材料添加剂钴的硫化镍矿制备

  硫化镍精矿一般含镍4~5%,含钴0.1~0.3%。镍的火法熔炼过程中,由于钴对氧和硫的亲合力介于铁镍之间在转炉吹炼高冰镍时,可控制冰镍中铁的氧化程度,使钴富集于高冰镍或富集于转炉渣,分别用下述方法提取:  1、富集于高冰镍中的钴,在镍电解精炼过程中,钴和镍一起进入阳极液。在净液除钴过程中,钴以高

关于三氧化二镍的简介

  氧化高镍(nickelic oxide),是一种无机化合物,化学式Ni2O3,为灰黑色粉末,不溶于水,溶于硫酸和硝酸并放出氧气,溶于热盐酸并放出氯气,主要用作陶瓷、玻璃、搪瓷的着色颜料,也可用于镍粉的制造及磁性体的研究。  2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步

离子置换方法制备出超级电容器新材料

  近日,记者从郑州大学了解到,该校化学与分子工程学院副教授陈卫华博士带领的课题组,在国家自然科学基金和河南省教育厅基础研究计划等项目支持下,率先利用部分离子置换的方法制备出高性能硫化物超级电容器电极材料,相关研究成果发表在最近一期由美国化学会主办的《材料化学期刊》上。  据悉,与传统电容器相比,超

科学家离子置换方法制备出超级电容器新材料

  日前,记者从郑州大学了解到,该校化学与分子工程学院副教授陈卫华博士带领的课题组,在国家自然科学基金和河南省教育厅基础研究计划等项目支持下,率先利用部分离子置换的方法制备出高性能硫化物超级电容器电极材料,相关研究成果发表在最近一期由美国化学会主办的《材料化学期刊》上。  据悉,与传统电容器相比,超

三氧化二镍的计算化学数据

  氢键供体数量:0  氢键受体数量:1  可旋转化学键数量:0  拓扑分子极性表面积(TPSA):17.1  重原子数量:2  表面电荷:0  复杂度:2  同位素原子数量:0  确定原子立构中心数量:0  不确定原子立构中心数量:0  确定化学键立构中心数量:0  不确定化学键立构中心数量:0 

简述三氧化二镍的防护措施

  工程控制:密闭操作,局部排风。  呼吸系统防护:可能接触其粉尘时,必须佩戴防尘面具(全面罩)。紧急事态抢救或撤离时,应该佩戴空气呼吸器。  眼睛防护:呼吸系统防护中已作防护。  身体防护:穿连衣式胶布防毒衣。  手防护:戴橡胶手套。  其他防护:尽可能减少直接接触。工作完毕,淋浴更衣。

只有泡沫镍和材料怎么制备超级电容器工作电极

超级电容器,将材料涂到泡沫镍上制备工作电极,是涂单面还是双面超级电容选用石墨做电极材料:第一,是因为石墨材料的电化学稳定性较好,可以让超级电容承受较高单体电压。电极不容易损耗。第二,是因为石墨材料加工速度快,成本低。第三,是因为石墨材料,重量轻,导热和导电性能好。用于超级电容器的电极材料主要是碳材料

简述三氧化二镍的理化性质

  一、基本信息  化学式:Ni2O3  分子量:165.42  CAS号:1314-06-3  EINECS号:215-217-8  二、理化性质  密度:4.84g/cm3  外观:灰黑色粉末  溶解性:不溶于水

镍电极的应用及发展

镍电极的研究和应用有着悠久的历史。广泛使用的 Cd/Ni、H2/Ni、Zn/Ni、Fe/Ni电池,以及近年来为消除镉污染而迅速发展起来的新型金属氢化物镍(MH-Ni)电池,都以镍电极作为正极。特别是金属氢化物镍电池目前仍具有很高的商业价值,因此,对高容量、高活性镍正极物质的研制具有重要现实意义。对氧

量子尺度氢氧化镍电极材料可控制备方面获进展

  过渡金属氢氧化物广泛应用于能源、环保、传感器等领域。如何提升过渡金属氢氧化物的电化学活性和稳定性一直是该领域的核心问题。最近,中国科学院兰州化学物理研究所清洁能源化学与材料实验室阎兴斌课题组在极小尺寸氢氧化镍的制备、表征及电化学储能反应机理过程等方面取得了新进展,相关研究成果以Ultra-sma

锂电池材料二硫化钼的介绍

  二硫化钼(或moly)是由钼和硫组成的无机化合物。其化学式为MoS₂。该化合物被归类为过渡金属二硫化合物。它是一种银黑色固体,以矿物辉钼矿的形式存在,辉钼矿是钼的主要矿石。MoS₂相对不活跃。它不受稀酸和氧的影响。在外观和感觉上,二硫化钼类似于石墨。因其低摩擦和稳健性,它被广泛用作干润滑剂。大部

锂电材料二硫化钼的机械性能

  二硫化钼由于其层状结构和低摩擦系数,作为润滑材料表现优异。当剪切应力施加到材料上时,层间滑动耗散能量。在不同的环境中已经进行了大量的工作来表征二硫化钼的摩擦系数和剪切强度。二硫化钼的剪切强度随着摩擦系数的增加而增加。这种特性被称为超级润滑性。在环境条件下,二硫化钼的摩擦系数确定为0.150,相应

关于锂电材料二硫化钼防御的作用

  二硫化钼在某些情况下用作添加剂润滑脂和干膜润滑剂以提高压力和温度公差,并在基底磨损或迁移后对预期的应用点提供二次润滑。用二硫化钼润滑脂强化的润滑脂有许多好处:非常适合难以到达的区域、减少磨损和磨损、降低运营成本、持久耐用、操作员友好型、环保意识、适用接头和活动部件、防锈、出色的表面渗透性。

模板法制备镍钴锰三元正极材料

  模板法凭借其空间限域作用和结构导向作用,在制备具有特殊形貌和精确粒径的材料上有着广泛应用。  纳米多孔的333型粒子一方面可以极大缩短锂离子扩散路径,另一方面电解液可以浸润至纳米孔中为Li+扩散增加另一通道,同时纳米孔还可以缓冲长循环材料体积变化,从而提高材料稳定性。以上这些优点使得333型在水

镍钴锰三元材料的分析研究

  镍钴锰三元材料是近年来开发的一类新型锂离子电池正极材料,具有容量高、循环稳定性好、成本适中等重要优点,由于这类材料可以同时有效克服钴酸锂材料成本过高、锰酸锂材料稳定性不高、磷酸铁锂容量低等问题,在电池中已实现了成功的应用,并且应用规模得到了迅速的发展。据高工产研锂电研究所(GGII)披露,201

三氧化二镍的急救措施和消防措施

  一、急救措施  皮肤接触:脱去污染的衣着,用大量流动清水冲洗。就医。  眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。  吸入:脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。  食入:饮足量温水,催吐。就医。  二、消防措施  危险特性:未有特殊的燃烧爆炸特性。  有害燃烧产物:自然分解

三氧化二镍的操作处置与储存介绍

  操作注意事项:密闭操作,局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴防尘面具(全面罩),穿连衣式胶布防毒衣,戴橡胶手套。避免产生粉尘。避免与酸类接触。搬运时要轻装轻卸,防止包装及容器损坏。配备泄漏应急处理设备。倒空的容器可能残留有害物。  储存注意事项:储存于阴凉、通风

简述锂电材料二硫化钼的化学反应

  二硫化钼在空气中是稳定的,只能被侵蚀性试剂侵蚀。加热时与氧气发生反应,形成三氧化钼:  2 MoS2+ 7 O2→ 2 MoO3+ 4 SO2  氯气在高温下与二硫化钼反应,形成五氯化钼:  2 MoS2+ 7 Cl2→ 2 MoCl5+ 2 S2Cl2

锂电池材料二硫化钼的制备原理

  辉钼精矿用盐酸和氢氟酸在直接蒸汽加热下,反复搅拌处理,用热水洗涤、离心、干燥、粉碎,可制得。钼酸铵溶液中通入硫化氢气体,生成硫代钼酸铵。加盐酸转变为三硫化钼沉淀,后离心、洗涤、干燥、粉碎。最后加热至950 °C脱硫可制得。

关于锂电池材料二硫化钼的介绍

  二硫化钼是一种无机物,化学式为MoS2,是辉钼矿的主要成分。黑色固体粉末,有金属光泽。熔点2375℃,密度4.80g/cm³(14℃),莫氏硬度1.0~1.5。  辉钼矿的主要成分。黑色固体粉末,有金属光泽。化学式MoS2,熔点2375℃,密度4.80g/cm3(14℃),莫氏硬度1.0~1.5

简述锂电池材料二硫化钼的用途

  二硫化钼是重要的固体润滑剂,特别适用于高温高压下。它还有抗磁性,可用作线性光电导体和显示P型或N型导电性能的半导体,具有整流和换能的作用。二硫化钼还可用作复杂烃类脱氢的催化剂。  它也被誉为“高级固体润滑油王”。二硫化钼是由天然钼精矿粉经化学提纯后改变分子结构而制成的固体粉剂。本品色黑稍带银灰色

溶胶凝胶法制备镍钴锰三元正极材料

  溶胶凝胶法(sol-gel)最大优点是可在极短时间内实现反应物在分子水平上均匀混合,制备得到的材料具有化学成分分布均匀、具有精确的化学计量比、粒径小且分布窄等优点。  MEI等采用改良的sol-gel法:将柠檬酸和乙二醇加入到一定浓度锂镍钴锰硝酸盐溶液中形成溶胶,然后加入适量的聚乙二醇(PEG-

喷雾干燥法制备镍钴锰三元正极材料

  喷雾干燥法因自动化程度高、制备周期短、得到的颗粒细微且粒径分布窄、无工业废水产生等优势,被视为是应用前景非常广阔的一种生产三元材料的方法。  OLJACA等采用喷雾干燥法制备了组成为333三元材料,在60~150℃高温下,镍钴锰锂硝酸盐迅速雾化,在短时间内水分蒸发,原料也迅速混匀,最后得到的粉末

镍钴锰三元正极材料制备固相法介绍

  三元材料创始人OHZUKU最初就是采用固相法合成333材料,传统固相法由于仅简单采用机械混合,因此很难制备粒径均一电化学性能稳定的三元材料。为此,HE等、LIU等采用低熔点的乙酸镍钴锰,在高于熔点温度下焙烧,金属乙酸盐成流体态,原料可以很好混合,并且原料中混入一定草酸以缓解团聚,制备出来的333

简述锂电材料二硫化钼的催化作用

  MoS2用作石化,例如加氢脱硫中脱硫的辅助催化剂。MoS2催化剂的有效性通过添加少量的钴或者镍得到增强。这些硫化物的紧密混合物是负载在氧化铝上。这种催化剂是通过用下列物质处理钼酸盐/钴或镍浸渍氧化铝原位生成的H2S或者等效的试剂。催化作用不发生在微晶的规则片状区域,而是发生在这些平面的边缘。

简述锂电池材料二硫化钼的日常防护

  防护措施  工程控制:密闭操作,局部排风。  呼吸系统防护:空气中粉尘浓度超标时,建议佩戴自吸过滤式防尘口罩。紧急事态抢救或撤离时,应该佩戴空气呼吸器。  眼睛防护: 戴化学安全防护眼镜。  身体防护:穿防毒物渗透工作服。  手防护:戴乳胶手套。  其它:注意个人清洁卫生。  急救措施  吸入:

概述二硫化铁在光电材料中的应用

  二硫化亚铁是一种在自然界储量非常丰富的无毒环境友好型间接带隙半导体材料,带隙宽度为0.95 eV。非常接近理想太阳能电池材料所需要的1.1 eV的要求,同时具有优良的光吸收能力,吸收系数达到105cm-1。因此二硫化亚铁材料是一种非常具有潜力的新型光伏材料。2009年相关文献报道中,其在23种材

锂电池材料二硫化钼的生产相关介绍

  二硫化钼天然存在于辉钼矿、结晶矿物或胶硫钼矿中——一种稀有的低温辉钼矿。辉钼矿通过浮选处理得到相对纯净的二硫化钼。主要污染物是碳。MoS2也可通过用硫化氢或元素硫对几乎所有钼化合物进行热处理而产生,并可通过五氯化钼的复分解反应产生。

镍钴锰三元正极材料制备不同方法的对比

  固相法虽工艺简单,但材料形貌、粒径等难以控制;共沉淀法通过控制温度、搅拌速度、pH值等可制备粒径分布窄、振实密度高等电化学性能优异的三元材料,但是共沉淀法需要过滤、洗涤等工序,产生大量工业废水;溶胶凝胶法、喷雾热解法和模板法得到的材料元素化学计量比精确可控、颗粒小且分散性好,材料电池性能优异,但