Antpedia LOGO WIKI资讯

自组装DNA纳米结构“侵染”细胞过程获揭示

中科院上海应用物理研究所樊春海课题组和黄庆课题组,应用一系列先进的细胞显微成像技术,并结合生物化学手段,清晰展示了一类自组装DNA四面体结构在活细胞中的摄取与转运过程,为其在药物载运和治疗方面的应用奠定了良好基础。相关成果日前以封面论文形式发表于《德国应用化学》杂志。 DNA不仅是生命的密码,还可作为制造纳米级构件和机器的通用元件。利用DNA分子的自组装特性,DNA纳米技术领域的研究者可以根据简单的核酸碱基配对法则,设计并在试管中构造出精确而复杂的DNA纳米结构。 DNA四面体结构是一类重要的自组装DNA纳米结构。2011年,樊春海和黄庆课题组在国际上首次报道了DNA四面体结构可以作为一种纳米尺度的药物载体,将具有免疫刺激效应的CpG寡核苷酸转运进入细胞并刺激产生特定的细胞因子,其有望成为一种免疫治疗药物。然而,细胞膜具有负电性,通常会将同样带有负电荷的核酸分子屏蔽在膜外。这些DNA纳米结构如何穿越细胞膜屏障进入细胞成为......阅读全文

铝基纳米结构可抑制肿瘤细胞生长

  俄罗斯科学家与斯洛文尼亚和以色列研究人员合作,研制出一种可有效抑制肿瘤细胞生长的铝基纳米结构。  据俄《消息报》报道,俄托木斯克国际科学实验室研发的这种铝基纳米结构可让肿瘤细胞完全停止生长,却不会对人体造成伤害,并可自然排出体外。小鼠实验显示,铝基纳米结构注入小鼠肿瘤胞外空间24小时后,肿瘤细胞

用于活细胞分析的DNA纳米结构|JACS

  基于DNA的探针由于能够识别核酸和非核酸靶点、易于合成和化学修饰、易于与信号放大方案接口以及固有的生物相容性,构成了一个多功能的生物测量平台。在这里,美国西北大学Chad A. Mirkin教授等人提供了从线性DNA结构到结构更复杂的纳米结构的转变如何彻底改变活细胞分析的演变视角。调节结构产生的

用于毒素检验的细胞结构式纳米舱

近日,苏黎世联邦理工学院的研究者申报了一项专利检验系统,借此能够免除成千上万次的动物实验。为此,须在药物制剂的批次控制时将脂质体的纳米舱与肉毒杆菌神经毒素共同投入使用。 如今,药物制剂如肉毒杆菌Botox(瘦脸用)、Bocouture(除眉间纹用)或者Azzalure(眼表整容用)已

自组装DNA纳米结构“侵染”细胞过程获揭示

  中科院上海应用物理研究所樊春海课题组和黄庆课题组,应用一系列先进的细胞显微成像技术,并结合生物化学手段,清晰展示了一类自组装DNA四面体结构在活细胞中的摄取与转运过程,为其在药物载运和治疗方面的应用奠定了良好基础。相关成果日前以封面论文形式发表于《德国应用化学》杂志。  DNA不仅是生命的密码,

《纳米快报》:一维半导体纳米结构光子学

在基金委青年基金、纳米重点项目和国家纳米测试基金及973课题的支持下,湖南大学纳米技术研究中心潘安练、邹炳锁教授等团队成员和北京大学、国家纳米中心以及德国马普研究所合作,在一维半导体纳米结构光子学的研究上取得了重大突破:首次正式提出了半导体一维纳米结构中光子输运的概念,建立光传播的理论模型,并在实验

苏州纳米构建金纳米棒@金纳米粒子手性螺旋超结构

  等离子体纳米粒子及其组装结构因为优异的光学特性在纳米科技中具有广泛应用,如超材料、生物传感器、光电器件等。精准构建等离子体纳米结构对于光学特性的深入研究意义重大,而精确调控等离子体纳米粒子的表面功能性质则是进一步获得复杂自组装体系的关键。目前借助各种物理和化学方法,可在纳米粒子表面的一定区域范围

纳米结构启动质谱技术

  质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来

《Science》公布人类骨骼纳米结构

  约克大学和帝国理工学院的研究小组利用先进的人体骨矿物纳米水平3D成像技术,首次展示了骨矿物结晶的分层结构,我们的骨骼正是由这些纳米级结构组合搭建而成。  想象一下,加速奔跑的猎豹和身形庞大的大象,生物骨骼具备良好的韧性和力量。  骨骼的性质可以归因为它的层次结构。然而,骨的主要成分是矿物质和蛋白

国家纳米科学中心分级纳米结构研究取得重要进展

构成网格的结构单元本身就是网格  在分级纳米结构的制备中,采用最多的方法是在已有的一维纳米结构(例如纳米线)表面继续沉积或者生长这些一维的结构,例如,螺位错驱动的PdS纳米松树;而基于二维纳米结构单元的分级纳米结构的研究尚不多见。和一维纳米结构相比,二维纳米结构能像剪纸那样被“雕镂”

激光干涉技术打破纳米尺度极限 亚细胞结构观察成现实

  光学显微镜自1590年由荷兰詹森父子创制伊始,即成为生命科学最重要的研究工具之一。进入21世纪,借助荧光分子,科学家将光学显微镜的分辨率提高了一个数量级,由约一半光波波长(250 nm)拓展至几十纳米,并兴起了超高分辨荧光成像技术,用于“看到”精细的亚细胞结构和生物大分子定位,相关工作荣膺201