美实验发现惰性金电极会拉拢水分子灵敏度达纳米级

近日,美国能源部劳伦斯伯克利国家实验室的研究人员将金属金浸在电解液中,首次在不同的通电环境下观测到固液交界面周围水分子的结构,并发现金可以吸引水分子,使其脱离原有的氢键。该实验灵敏度达到亚纳米级,是科学界首次对通电的电极做出如此高灵敏度的研究。研究报告刊载在《科学》杂志上。 该实验以金作为惰性电极,以淡盐水作为电解液。结果可能让人意外:金这种惰性金属可以让大量的水分子脱离氢键,而被金本身吸引。当给金通负电时,被吸引的水分子数量增加了,从而又吸引了更多带正电的氢原子。此外,若通正电,则水分子会让自身氢元素远离金,从而让交界面周围的氢键得到强化。 氢键连接着水分子,让每个水分子中带弱正电的氢原子与相邻分子中带弱负电的氧原子相吸引,从而使水分子聚集,在温度和压力合适的情况下,形成液态水。 据物理学家组织网近日报道,实验中,科研人员创新了X射线吸收光谱法,从而不仅可以观察电极表面周围的分子,还可以判断在不同电压下这些分子排列的......阅读全文

氢键的结构和功能

氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。[X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子,如一水合氨分子(NH3·H2O)之间的氢键]。

羧酸分子间怎么形成氢键

羧基上有一个羰基,羰基氧可以和水分子的氢形成氢键哈,羧基上还有一个羟基,这个羟基上的氧可以和水的氢原子形成氢键,这个羟基上的氢可以和水分子的氧形成氢键。所以一个羧基原则上可以和水分子形成三个氢键。很多羧酸都以二聚体的形式存在,就是羧基之间形成了氢键。羧基中有两个氧原子,既可以像醇分子那样通过羟基氧和

羧酸分子间怎么形成氢键

羧基上有一个羰基,羰基氧可以和水分子的氢形成氢键哈,羧基上还有一个羟基,这个羟基上的氧可以和水的氢原子形成氢键,这个羟基上的氢可以和水分子的氧形成氢键。所以一个羧基原则上可以和水分子形成三个氢键。很多羧酸都以二聚体的形式存在,就是羧基之间形成了氢键。羧基中有两个氧原子,既可以像醇分子那样通过羟基氧和

氢键的理化特性的介绍

  氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF中都有氢键存在。能够形成氢键的物质是很多的,如水、水合物、氨合物、无机酸和某些有机化合物。氢键的存在,影响到物质的某些性质。  熔沸点  分子间有氢键的物质熔化或气化时,除了要克服纯粹的

二级氢键的定义

中文名称二级氢键英文名称secondary hydrogen bond定  义核酸或蛋白质二级结构中的氢键。应用学科生物化学与分子生物学(一级学科),总论(二级学科)

关于氢键的形成条件介绍

  在蛋白质的a-螺旋的情况下是N-H…O型的氢键,DNA的双螺旋情况下是N-H…O,N-H…N型的氢键,因为这些结构是稳定的,所以这样的氢键很多。此外,水和其他溶媒是异质的,也由于在水分子间生成O-H—…O型氢键。因此,这也就成为疏水结合形成的原因。  (1) 存在与电负性很大的原子A 形成强极性

羧基与羟基如何形成氢键

一个羟基的氢原子指向另一个羟基的氧原子。

氢键的结构和功能特点

氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。[X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子,如一水合氨分子(NH3·H2O)之间的氢键]。

氢键调控糠醛转化新策略

  近日,中科院大连化学物理研究所有机催化研究组(DNL0601)石松副研究员与美国特拉华大学Dion Vlachos教授等合作,在糠醛等生物质催化选择性调控研究方面取得新进展。  在生物质催化转化反应中,生物质底物由于活泼基团类型多,控制其选择性一直是难点。本工作中,石松等在前期生物质羟基、C-H

关于氢键的相关分类介绍

  同种分子之间  现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有负电子对并带部分负电荷的F

胞化学基础​氢键的分类

同种分子之间现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有负电子对并带部分负电荷的F原子有可

AFM在化学中的应用

       许多化学反应是在电极表面进行的,了解这些反应过程,研究反应的动力学问题是化学家们长期研究的题目。吸附物质将于表面形成吸附层,吸附层的原子分子结构,分子间相互作用是研究表面化学反应的前提与基础。在超高真空环境下,科学家们使用蒸发或升华的方法将气态分子或原子吸附在基底(一般为金属或半导体)

关于反渗透的氢键理论的基本原理介绍

  醋酸纤维素(一种半透膜材料)是一种具有高度有序矩阵结构的聚合物,它具有与水或醇等溶剂形成氢键的能力。盐水中的水分子能与醋酸纤维素半透膜上的羰基形成氢键。在反渗透压力推动的作用下,以氢键结合进入醋酸纤维素膜的水分子能够由第一个氢键位置断裂而转移到另一个位置形成另一个氢键。这些水分子通过一连串的形成

水分子通过量子通道打破分子链

  水是地球上最普通的一种物质,这种物质又一次让科学家震惊。处于液态时,水分子会通过一种叫作分子链的方式连接在一起,这些分子链经常被连接或打破。  最小的3D水滴由6个水分子组成,这些分子每次不仅可以组成一个水滴,也可以组成两个水滴。两个水分子可以同时打破与其邻居的氢键,像齿轮一样相互旋转偏离。  

AFM在化学中的应用

在化学中的应用许多化学反应是在电极表面进行的,了解这些反应过程,研究反应的动力学问题是化学家们长期研究的题目。吸附物质将于表面形成吸附层,吸附层的原子分子结构,分子间相互作用是研究表面化学反应的前提与基础。在超高真空环境下,科学家们使用蒸发或升华的方法将气态分子或原子吸附在基底(一般为金属或半导体)

控制锂离子电池电解液中的酸和水含量的添加剂

  有机电解液中存在的痕量水和HF对性能优良的SEl膜的形成是有一定作用的,这些都可以从EC、PC等溶剂在电极界面的反应中看出。但水和酸(HF)的含量过高,不仅会导致LiPF。的分解,而且会破坏SEI膜[8]。当AlbO3、MgO、Bao和锂或钙的碳酸盐等作为添加剂加入到电解液中,它们将与电解液中微

五水硫酸铜的失水过程介绍

  五水硫酸铜晶体失水分三步  五水硫酸铜中两个仅以配位键与铜离子结合的水分子最先失去,大致温度为102摄氏度。  两个与铜离子以配位键结合,并且与外部的一个水分子以氢键结合的水分子随温度升高而失去,大致温度为113摄氏度。  最外层水分子最难失去,因为它的氢原子与周围的硫酸根离子中的氧原子之间形成

锂电池电解液控制电解液中水和HF含量的添加剂的介绍

  有机电解液中存在的痕量水和HF对性能优良的SEI膜的形成是有一定作用的,这些都可以从EC、PC等溶剂在电极界面的反应中看出。但水和酸(HF)的含量过高,不仅会导致LiPF6的分解,而且会破坏SEI膜。当A1203、MgO、BaO和锂或钙的碳酸盐等作为添加剂加入到电解液中,它们将与电解液中微量的H

看似简单的水竟然充满了奥秘?

  水有70多条反常特性,  这些性质都还处于研究之中,  大家还不能完全了解它内在的机制到底是什么。  水是大家司空见惯的一种物质,但是对科学家而言,水可以说是自然界最复杂的物质之一。到目前为止,仍然需要更多的科学研究去探索水的性质,所以水对于我们来说是一个非常陌生的世界。  奇怪的水  已完成:

金属所新型低成本铁基液流电池技术研究获进展

在新型储能技术路线中,以全钒液流电池为代表的液流电池储能技术本质安全、可灵活部署,成为长时储能技术的首选电化学储能技术路线。然而,受制于钒资源释放量,现阶段全钒液流电池产业化发展面临成本高这一问题。因此,研发低成本液流电池新体系新技术,是解决现阶段液流电池产业化发展瓶颈的途径。近期,中国科学院金属研

三级氢键的结构特点

中文名称三级氢键英文名称tertiary hydrogen bond定  义在转移核糖核酸(tRNA)折叠成倒L字母形结构中,各种不同的氢键供体与接纳体基团之间所形成的氢键。并非普通双螺旋RNA片段中碱基对间的氢键,而是用来维系tRNA三级折叠结构的氢键。应用学科生物化学与分子生物学(一级学科),总

胞化学基础​氢键的影响作用

氢键对化合物熔点和沸点的影响分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被

羟基和甲基可以形成氢键吗

羟基和甲基不可以形成氢键。根据查询相关资料信息,含羟基物质不分子间容易形成氢键,羟甲基分子间不能形成氢键,两者羟基极性大。

氢键的结合能的计算

氢键的结合能是2—8千卡(Kcal)。氢键是一种比分子间作用力(范德华力)稍强,比共价键和离子键弱很多的相互作用。其稳定性弱于共价键和离子键。常见氢键的平均键能与键长数据为:

胞化学基础​氢键的形成过程

氢键通常可用X-H…Y来表示。其中X以共价键(或离子键)与氢相连,具有较高的电负性,可以稳定负电荷,因此氢易解离,具有酸性(质子给予体)。而Y则具有较高的电子密度,一般是含有孤对电子的原子,容易吸引氢质子,从而与X和H原子形成三中心四电子键。成键原子典型的氢键中,X和Y是电负性很强的F、N和O原子。

胞化学基础​氢键的理化特性

氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF中都有氢键存在。能够形成氢键的物质是很多的,如水、水合物、氨合物、无机酸和某些有机化合物。氢键的存在,影响到物质的某些性质。熔沸点分子间有氢键的物质熔化或气化时,除了要克服纯粹的分子间力外,

羧基内为什么不形成氢键

分子内氢键使物质熔沸点降低.分子内氢键必须具备形成氢键的必要条件,还要具有特定的条件,如:形成平面环,环的大小以五或六原子环最稳定,形成的环中没有任何的扭曲.如果是一个分子内两个羧基,一个羧基的H和另一个羧基的O是可以形成氢键的

可以在羟基间形成氢键吗

可以形成氢键,因为符合氢键的定义.氢键:化合物分子中凡是和电负性较大的原子相连的氢原子都有可能在和同一分子或另一分子内的另一电负性较大的原子相连接,这样形成的键,叫做氢键.能形成氢键的原子(如N、O、F等)都

羧基内为什么不形成氢键

分子内氢键使物质熔沸点降低.分子内氢键必须具备形成氢键的必要条件,还要具有特定的条件,如:形成平面环,环的大小以五或六原子环最稳定,形成的环中没有任何的扭曲.如果是一个分子内两个羧基,一个羧基的H和另一个羧基的O是可以形成氢键的

胞化学基础​氢键的形成条件

在蛋白质的a-螺旋的情况下是N-H…O型的氢键,DNA的双螺旋情况下是N-H…O,N-H…N型的氢键,因为这些结构是稳定的,所以这样的氢键很多。此外,水和其他溶媒是异质的,也由于在水分子间生成O-H—…O型氢键。因此,这也就成为疏水结合形成的原因。(1) 存在与电负性很大的原子A 形成强极性键的氢原