Antpedia LOGO WIKI资讯

武汉物数所在量子气体临界性理论研究中取得进展

近日,中国科学院武汉物理与数学研究所管习文研究员与香港中文大学周琦教授合作,在关于冷原子量子多体系统中的两体关联和临界性的研究中取得了新进展,其研究结果发表于《自然·通讯》(Nature Communications)。 量子多体系统是凝聚态物理学中极其重要的研究领域,特别是近些年在冷原子的研究方面,美国的檀时钠教授发现两体短程关联刻画了稀薄冷原子多体系统的普适行为。这种两体短程关联反应了在短距离极限下发现两个冷原子的几率,现在被称为Tan Contact。另一方面,量子临界性是量子多体系统在相变临界点附近所表现出的集体关联普适规律。如何理解超流与正常费米气体在相转变温度附近的Tan Contact 成为该研究的热点。 在这篇《自然·通讯》文章中,他们发现Tan Contact 的二体短程关联和多体临界现象之间存在深刻的内在关系。通过普适的热力学微分形式,建立了Tan Contact 与热力学量及超流密度之间的......阅读全文

巡游电子量子临界行为研究取得进展

  巡游电子量子临界现象,作为凝聚态物理学关联电子系统的传统难题,反复出现在量子物质科学的诸多研究方向上,对其进行合理的模型设计和正确的理论计算,能够帮助人们理解重费米子材料、铜基和铁基高温超导体、过渡金属氧化物、石墨烯层状结构等体系中普遍出现的反常输运、奇异金属和非费米液体行为。然而,巡游电子量子

诺特定理与去禁闭量子临界点研究获进展

  以局域序参量和对称性破缺为圭帛的朗道-金兹伯格-威尔逊相变和物质分类理论是传统凝聚态物理学的基石。近年来,以拓扑序、涌现物质场与规范场耦合为特点的量子物质科学新范式,正在逐步超越这个框架,其中以去禁闭量子临界点为代表的新型量子相变,受到了从凝聚态物理学到高能物理学的广泛关注。   不同于朗道

武汉物数所在量子气体临界性理论研究中取得进展

  近日,中国科学院武汉物理与数学研究所管习文研究员与香港中文大学周琦教授合作,在关于冷原子量子多体系统中的两体关联和临界性的研究中取得了新进展,其研究结果发表于《自然·通讯》(Nature Communications)。   量子多体系统是凝聚态物理学中极其重要的研究领域,特别是近

武汉物数所在量子气体临界性理论研究中取得进展

  近日,中国科学院武汉物理与数学研究所管习文研究员与香港中文大学周琦教授合作,在关于冷原子量子多体系统中的两体关联和临界性的研究中取得了新进展,其研究结果发表于《自然·通讯》(Nature Communications)。  量子多体系统是凝聚态物理学中极其重要的研究领域,特别是近些年在冷原子的研

自然状态材料中存在量子临界点

  据美国物理学家组织网1月20日报道,近日,一个美日国际研究小组以镱为基础材料研制出一种奇特的新型超导体。该超导体不需要改变压力、磁场强度或经化学掺杂,在自然状态就能达到物理学家所说的“量子临界点”。这一发现突破了理论物理的限制,为人们理解量子临界状态打开了新视野。这种异常性质,也将

物理所等在CrAs螺旋磁有序量子临界点研究中取得进展

  CrAs是具有螺旋反铁磁序的关联金属。常压下,CrAs具有“MnP”型正交晶体结构,随着温度降低,在TN ≈ 265 K会发生一级的顺磁-反铁磁相变,形成双螺旋反铁磁结构,即Cr离子自旋(~1.7μB)躺在ab平面内旋转,螺旋传播方向沿着c轴。实验还发现,螺旋反铁磁相变还同时伴随着等结构转变,

中国科大在超导量子临界现象的基础理论研究中取得进展

  近期,中国科学技术大学近代物理系副教授刘国柱课题组在凝聚态体系中量子临界现象理论研究方面取得新进展,提出了一个在量子临界体系中实现衍生超对称的必要条件,为在凝聚态物理中找寻有效超对称提供了有价值的限制和理论指导,相关研究结果以Absence of emergent supersymmetry i

物理所等铁基超导体中量子临界现象研究获进展

  在凝聚态物理中,通过化学掺杂、压力、磁场等非温度因素调控来实现的零温下相变被称之为量子相变,如果发生的量子相变属于二级相变,那么其对应的零温下参量临界点就称之为量子临界点。理论上认为,量子相变及其相关涨落是非常规超导材料中诸多奇异量子物性的物理根源之一,确认量子临界点存在与否也成为实验上的重要挑

物理所等铁基超导体的量子临界特性研究取得新进展

  非常规超导体中所呈现奇异量子物性的物理根源常常认为来自于零温下的量子相变及其相关涨落。在铁基超导体中,通过对反铁磁母体进行载流子或等价位掺杂均可抑制反铁磁性,并在磁性区域边缘诱导出最佳超导电性。因此,在反铁磁区和顺磁区的零温边界处很可能存在磁量子临界点,在其附近的有限温度区域会因量子临界特性而影

物理所合作在重费米子材料量子临界现象研究中获进展

  超导的出现与材料中的结构、磁或价态的不稳定性密切相关。在这些不稳定性所导致的相变点附近存在强烈的热或量子涨落,会引起电子配对产生超导。在强关联材料中,非常规超导往往出现在零温反铁磁相变(量子临界点)附近,表明非常规超导依存于磁性量子涨落。实验上对反铁磁母体加压/磁场或化学掺杂,往往可以在磁性相变