Antpedia LOGO WIKI资讯

上海光机所啁啾镜对研制取得进展

近期,中国科学院上海光学精密机械研究所中科院强激光材料重点实验室在色散反射镜研制上取得新进展,在国内率先成功研制出可以获得10fs量级脉冲的钛宝石激光谐振腔内用两种啁啾镜对,并和中国科学院物理研究所L07组进行合作,开展了色散补偿的实验研究(如图1所示),实现了稳定锁模,获得的宽带光谱(如图2所示)可支持最窄7.7fs的脉冲。 与传统的色散补偿器件光栅和棱镜对相比,啁啾镜具有损耗低、对光路不敏感、结构简单紧凑等优点,可支持高重复频率飞秒激光振荡器,被越来越广泛的应用到飞秒激光研究中,成为获得亚10fs超短脉冲激光不可缺少的色散补偿元件。由于色散镜在提供高反射率的同时须提供一定量的群延迟色散(Group delay dispersion,GDD)补偿,但随着补偿带宽的增加,色散振荡也愈加明显,因此必须通过啁啾镜对的形式加以补偿抑制。同时,因为啁啾色散介质膜的设计为啁啾结构,所以这种非规整膜系在制备上对膜层厚度误差非常敏感,1......阅读全文

上海光机所啁啾镜对研制取得进展

  近期,中国科学院上海光学精密机械研究所中科院强激光材料重点实验室在色散反射镜研制上取得新进展,在国内率先成功研制出可以获得10fs量级脉冲的钛宝石激光谐振腔内用两种啁啾镜对,并和中国科学院物理研究所L07组进行合作,开展了色散补偿的实验研究(如图1所示),实现了稳定锁模,获得的宽带光谱(如图2所

我国阿秒脉冲的啁啾控制研究获新突破

  徐至展、李儒新研究组的论文7月24日发表于PRL   中科院上海光机所强场激光物理国家重点实验室徐至展、李儒新研究组在7月24日出版的国际学术期刊《物理评论快报》上发表的论文中,首次提出了利用驱动激光场控制色散特性来补偿阿秒脉冲固有啁啾的新方法。“这种不同于以往利用介质静态色散特性的方法

关于色度色散的基本介绍

  1、色度色散简介:色度色散包括材料色散和波导色散。材料色散:由于光纤材料石英玻璃对不同光频的折射率不同,而光源具有一定的光谱宽度,不同的光频引起的群速率也不同,从而造成了光脉冲的展宽。波导色散:对于光纤的某一传输模式,在不同的光频下的群速度不同引起的脉冲展宽。它与光纤结构的波导效应有关,因此也被

上海光机所提出一种用于色散控制的新型双CPA激光系统

  近日,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室在双CPA激光系统四阶色散(FOD)的被动控制研究中取得进展,提出一种“负正啁啾脉冲放大(NPCPA)”的新型双CPA激光系统设计。相关成果发表《光学快报》[Optics Express 28 (21): 31743 (2020)]

大负色散耗散孤子光纤激光器方向的研究取得进展!

  近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在大负色散耗散孤子光纤激光器方向的研究中取得进展。通过一种九字形光纤激光器结合啁啾光纤光栅,获得工作在大负色散区域耗散孤子脉冲,并通过数值仿真揭示大负色散耗散孤子的工作机制,相关研究成果发表在Optics Letters上。  耗散孤

研究人员在大负色散耗散孤子光纤激光器方面获进展

  近期,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在大负色散耗散孤子光纤激光器方向的研究中取得进展.通过一种九字形光纤激光器结合啁啾光纤光栅,获得工作在大负色散区域耗散孤子脉冲,并通过数值仿真揭示大负色散耗散孤子的工作机制,相关研究成果发表在Optics Letters上.  耗散孤

采用时空色散补偿技术拓宽单次脉冲测量时间窗口

  近期,中国科学院上海光学精密机械研究所高功率激光物理联合实验室测控组唐顺兴、姜秀青等人近期采用时空色散补偿技术,消除光栅单次自相关短脉冲测量中由于光栅时空色散引入的系统误差,将单次脉冲测量时间窗口拓宽至约原来的三倍(同等尺寸晶体)。相关成果发表在[Appl. Phys. B (2019) 12

光栅式传感器及其工作原理

光栅式传感器指采用光栅叠栅条纹原理测量位移的传感器。光栅是在一块长条形的光学玻璃上密集等间距平行的刻线,刻线密度为10~100线/毫米。由光栅形成的叠栅条纹具有光学放大作用和误差平均效应,因而能提高测量精度。简介:1978 年加拿大渥太华通信研究中心的K·O·Hill等人首次在掺锗石

色度色散能造成那些影响?

色度色散主要会造成脉冲展宽和啁啾效应。脉冲展宽是光纤色散对系统性能的影响的最主要的表现。当传输距离超过光纤的色散长度时,脉冲展宽过大,这时,系统将产生严重的码间干扰和误码。色散不仅使脉冲展宽,还使脉冲产生了相位调制。这种相位调制使脉冲的不同部位对中心频率产生了不同的偏离量,具有不同的频率,即脉冲的啁

浅析基于四阶色散的超快光纤激光(一)

孤子激光器通过平衡二阶色散和非线性可以直接产生亚10fs的脉冲,并且装置相对简单。然而,受限于孤子面积理论,孤子能量无法进一步提升。为了克服这个限制,需要激发带啁啾的脉冲,但后续的压缩使光路更加复杂同时效率也将降低。因此,为了保留孤子激光器的简单和高效性,需要新的方法克服孤子激光器的功率提升局限性。