英国科学家用单细胞动物打造生物机器人
英国西英格兰大学科研小组计划利用疟原虫粘菌研制出完全的生物机器人 据英国《新科学家》杂志报道,在人们的印象中,生物机器人只出现在科幻小说里。但是也许这将变成现实,英国西英格兰大学的科研人员近日获得了不菲的科研资金,他们将着手将单细胞动物打造成机器人。 地球上绝大多数物种是单细胞生物。看似简单的单细胞生物,向我们展示着它们无与伦比的能力。有的微生物则可在极端环境中茁壮成长,有的单细胞动物可以存活成千上万年。此外尽管单细胞动物十分低等,但是许多单细胞动物已经展示其“聪明才智”。单细胞动物的聪明行为不是有意识思考的结果,因为不像人类或者其他复杂生物,它们没有神经系统,更不用说大脑了。 科学家利用单细胞动物的“聪明”,前几年研制出单细胞控制的机器人。当时英国南安普顿大学的桑诺尔博士培养了一种星形的黏霉菌样品,把它附到一台六脚机器人上(每个星尖控制一条腿),用来控制机器人的运动。而西英格兰大学的安德鲁教授的设......阅读全文
单细胞DNA测序揭示微生物“暗物质”
据《自然》杂志网站7月14日(北京时间7月15日)报道,天文学家们认为,宇宙总物质量的23%由弥漫于其间且肉眼看不见的“暗物质”组成;现在,美国科学家进行了微生物“暗物质”研究,他们用单细胞DNA测序技术对多种微生物的基因组进行测序后发现,微生物远比我们所知道的要丰富多样,研究同时揭示了不同物种
Cell子刊:单细胞中的生物钟
我们的生物钟位于大脑视交叉上核的一万多个神经元中,实际上类似的生物钟也存在于我们体内几乎所有细胞内。瑞士日内瓦大学分子生物学系Ueli Schibler教授及其研究团队就在体外培养的细胞中研究了生物钟的分子机制,他们在单细胞中实时观察了生物钟分子齿轮对基因表达的节律性控制,这篇文章发表在Ce
单细胞生物反应器成功被研制
利用在小水滴中包裹多个单细胞或单细胞器的方法,可以将光学诱捕法和微流控小滴生成技术结合在一起。 目前,传统的试管检测技术正逐步被淘汰。由于微流控技术使得在日益小型化的容积内研究生化反应过程变得可能,实验室级的研究正向纳米级方向深入发展。美国华盛顿大学的Daniel Chiu及其同事,在最近发明
单细胞生物固碳、固氮双功效机制破译
蓝藻(Blue green algae)是一种重要的固碳菌,由于具有将氮气转化为可利用的营养,因此能够在营养贫乏的水域中进行光合作用。详细内容刊登于最新一期《The International Society for Microbial Ecology (ISME) Journal》杂志。 由美国
单细胞生物的生理功能和生殖方式
生理功能:能够独立完成包括营养、呼吸、排泄、运动、生殖等一系列生命活动。例如,草履虫可以通过表膜进行呼吸,通过口沟摄取食物,通过伸缩泡排泄废物,通过纤毛运动。具有应激性,能够对环境中的刺激做出反应,以适应环境的变化。比如趋利避害的行为。生殖方式:单细胞生物的生殖方式多样,包括无性生殖(如分裂生殖、出
机器人会做生物学实验,你相信吗?
分析测试百科网讯 机器人可以在20秒之类完成人类需要一整天才能完成的生物学实验,使烦躁沉闷的实验变得有趣,更重要的是避免人为出错或是疏漏搞砸一项实验。你相信吗? 自动化机器人现在已经配备了能够借助干细胞培育简化版仿造人类器官的工具。幸运的是,这并非是来自“机器人统治地球并且圈养人类”的科幻情节
跳动的生物机器人心脏可更好模拟瓣膜
原文地址:http://news.sciencenet.cn/htmlnews/2024/1/515840.shtm 科学家通过用软机器人泵替换生物心脏左室的心肌来制作生物机器人心脏模拟器。图片来源:马尼沙·辛格美国麻省理工学院的研究人员将生物心脏和硅胶机器人泵结合在一起,创造了一种生物机器
柔性机器人创建体内3D生物打印
原文地址:http://news.sciencenet.cn/htmlnews/2023/3/494919.shtm 科技日报北京2月28日电 (记者刘霞)澳大利亚工程师开发了一种微型柔性软体机器人手臂,可将生物材料直接3D打印到人体器官上。未来医生们有望通过小的皮肤切口或天然小孔,将该设备送入
跳动的生物机器人心脏可更好模拟瓣膜
美国麻省理工学院的研究人员将生物心脏和硅胶机器人泵结合在一起,创造了一种生物机器人心脏,它可以像真正的心脏一样跳动。1月10日发表在《设备》杂志上的这一成果可模拟健康或患病心脏的结构、功能和运动,使外科医生和研究人员能够在收集实时数据的同时演示各种干预措施。目前的心脏模拟器并不能完全模拟心脏的复杂性
单细胞“纳米生物间谍”技术能进入活细胞取样
据物理学家组织网近日报道,美国加利福尼亚大学圣克鲁兹分校(UCSC)研究人员开发出一种机器人式的“纳米生物间谍”系统,能从单个活细胞内提取出微量样本,进行RNA或DNA测序,而不会杀死细胞。研究人员表示,这种单细胞“纳米生物间谍”技术是一种了解活细胞内部动态过程的有力工具。相关论文发表在最近出版
美研究人员首次合成人造单细胞生物
新华网华盛顿5月20日电 美国一个研究小组20日报告说,他们合成了一个人工基因组,并用它使一个被掏空的单细胞细菌“起死回生”。研究人员表示,这是第一个完全由人造基因指令控制的细胞,它向人造生命形式迈出了关键一步。 美国J・克雷格・文特尔研究所的研究人员在最新一期美国《科学》杂志上报告说
单细胞蛋白质的微生物及用途
微生物 生产单细胞蛋白质的微生物种类很多,有酵母菌、细菌、霉菌和担子菌等。 糖质原料:酵母属和假丝酵母属为主要生产菌。 正烷烃:假丝酵母为最主要利用菌。 甲烷:能利用甲烷作为唯一碳源的微生物,主要是细菌,如甲烷假单胞菌等。 甲醇:主要以细菌为主,放线菌、酵母菌和霉菌次之。甲烷利用菌也为
以细菌为基础的生物混合微型机器人
斯图加特-马克斯普朗克智能系统研究所身体智能系的一组科学家通过装备将机器人与生物学结合起来:细菌与人工成分构建生物杂交微型机器人。首先,如图1所示,研究小组将几个纳米脂质体附着在每个细菌上。在它们的外圈,这些球形载体包裹着一种材料(ICG,绿色粒子),这种材料在近红外光照射下就会融化。再往中间,在水
可云集“围攻”生物靶标的智能纳米机器人来了
近日,中国科学院合肥物质科学研究院杨良保研究员课题组、安徽大学等构建了可非线性云集“围攻”生物靶标分子的智能DNA分子纳米机器人模型。相关成果发表于纳米材料领域顶级期刊《纳米视野》。智能DNA分子纳米机器人非线性云集“围攻”靶标原子力显微成像 李绍飞供图“围攻”生物靶标“在试管液体环境下,当目标生物
新型类生物四足机器人实现多种生态转换
原文地址:http://news.sciencenet.cn/htmlnews/2023/9/508085.shtm9月6日,记者从南方科技大学了解到,南科大机械与能源工程系博士唐昭,英国皇家工程院院士、南科大讲席教授戴建生有关类生物变胞机器人期刊文章获评国际著名期刊《ASME机构学与机器人学技术期
可云集“围攻”生物靶标的智能纳米机器人来了
近日,中国科学院合肥物质科学研究院杨良保研究员课题组、安徽大学等构建了可非线性云集“围攻”生物靶标分子的智能DNA分子纳米机器人模型。相关成果发表于纳米材料领域顶级期刊《纳米视野》。智能DNA分子纳米机器人非线性云集“围攻”靶标原子力显微成像 李绍飞供图“围攻”生物靶标“在试管液体环境下,当目标生物
工程学突破!仿生物细胞群体机器人问世
英国《自然》杂志20日发表了一项工程学最新突破:美国科学家团队研发了一种能模拟生物细胞集体迁移的机器人,可实现移动、搬运物体及向光刺激移动。该研究为开发具有预先确定性行为的大规模群体机器人系统提供了全新途径,且比已诞生的传统机器人和仿生系统具有更高的可扩展性。 经过设计的模块化或群机器人系统
学界担忧首个人造单细胞生物双刃剑效应
美国私立科研机构克雷格·文特尔研究所研究人员5月20日报告说,他们培育出第一个由人工合成基因组控制的细胞,从而向人造生命形式迈出了关键一步。人造生命相关技术的应用前景固然广阔,但其双刃剑效应绝不可忽视。 这些研究人员人工合成了一种名为蕈状支原体的细菌的脱氧核糖核酸(DNA),并将其植入另一
聚焦单细胞蛋白生物制造-香山科学会议召开
稳定优质的蛋白资源供给是保障国家粮食安全的强大基石,而我国又是蛋白消费量最大的国家且呈快速增长趋势。“蛋白质原料短缺是我国目前一大‘痛点’问题。”在近日举行的香山科学会议第Y10次学术讨论会上,会议执行主席、中国科学院天津工业生物技术研究所研究员吴信指出。 十多年来,我国大豆的对外依存度较高。
单细胞分离用于单细胞基因扩增
单细胞分离连接不同管径大小的毛细玻璃针,可分离捕获各种非贴壁状态的单细胞和微粒等,如细菌、酵母、藻类细胞、植物花粉、原生动物单细胞、悬浮细胞、血液细胞、免疫细胞、卵细胞、各种悬液中单细胞及特殊标记的单细胞等。 单细胞分离用于各种类型的细胞分离培养、纯化、检测;获得单克隆细胞;用于单细胞基因扩增,
沈阳自动化所发表纳米机器人及生物医学应用研究新进展
近日,IEEE ransactions on Biomedical Engineering(2021, 68(1): 130-147)以封面文章形式发表了中国科学院沈阳自动化研究所微纳米课题组关于纳米机器人及其生物医学应用的研究综述文章Progress in nanorobotics for a
科学家用条状骨骼肌研制“生物机器人”
据国外媒体报道,目前,科学家首次成功研制一款由活体肌肉细胞驱动的行走机器人,它是由生物肌肉和机械部件构成。 生物肌肉非常柔韧,可使机器人能在实验室中推进,研究人员表示,它将引领新一代柔韧“生物机器人”的问世。美国伊利诺伊大学研究人员研制这种微型肌肉驱动生物机器人,它是由电流控制移动。
生物医学新突破-电子皮肤让机器人有“感觉”
中新网2月11电 据台湾“中央社”报道,美国科罗拉多大学波德分校的科学家研发出一种电子皮肤,这种薄薄的半透明材质宛如人类皮肤,能够侦测到温度、压力、湿度和气流,使得生物医学又往前迈进一步。 据一篇发表于《科学先端》期刊的研究显示,这种新材质能制造出较优质的义肢、改良未来机器人安全性,且有助
神经元损伤修复搭“桥”的微型生物机器人
由患者自身细胞构建的“分子医生”能够筛查癌症、修复受损组织、清除血管斑块,是研究人员对未来医学的构想。而美国塔夫茨大学发育生物学家Michael Levin致力将这种构想变为现实。 4年前,Levin和同事利用非洲爪蛙制造了一个“活体机器人”。他们将非洲爪蛙的胚胎心脏和皮肤细胞缝合在一起,形成
人工生物机器人研究需可控并关注长远伦理风险
近日,美国佛蒙特大学、塔弗茨大学和哈佛大学威斯研究院的研究人员在美国《国家科学院院刊》上发表论文,描述了世界首批人工生物机器人Xenobot的自我繁衍方式。这一研究引发了人们的关注。 科学的发展在其萌芽期确实有必要慎重、前瞻地考虑其风险。用人类尚未完全了解的生物组织片段构造人造物的隐忧在玛丽·
学界担忧首个人造单细胞生物的双刃剑效应
美国私立科研机构克雷格・文特尔研究所研究人员20日报告说,他们培育出第一个由人工合成基因组控制的细胞,从而向人造生命形式迈出了关键一步。人造生命相关技术的应用前景固然广阔,但其双刃剑效应绝不可忽视。 这些研究人员人工合成了一种名为蕈状支原体的细菌的脱氧核糖核酸(DNA),并将其植入另一个内
单细胞生物给我们的生活带来了哪些好处和坏处?
单细胞生物给我们的生活带来了诸多好处和坏处,以下是一些常见的方面:好处:食品和饮料生产:酵母是一种单细胞真菌,在面包制作中用于发酵,使面包膨胀松软。酿酒过程中,酵母将糖分转化为酒精和二氧化碳,生产出各种酒类。生物制药:某些细菌可以用于生产抗生素,如青霉素就是由青霉菌产生的。环境净化:一些细菌能够分解
-南极冰原下800米神秘湖泊发现单细胞微生物
“WISSARD”冰层钻探计划的取样口,直径大约为20英尺,约为0.5米 腾讯科学讯(罗辑/编译)据国外媒体报道,位于南极冰原下方惠兰斯湖(Lake Whillans)是个“与世隔绝”的神秘地带,科学家推测这里可能存在远古微生物,一个名为“WISSARD”的冰层钻探计划试图对这片原始湖
Namocell单细胞分离仪应用——单细胞测序
2018年11月,Namocell与CZ-Biohub(Chan Zuckerburg Biohub)合作,在单细胞测序领域做出了新的尝试。CZ-Biohub利用Namocell单细胞分离仪分选出目的B细胞,并且将其进行单细胞测序,为抗体新药的发现迈出了重要一步。单细胞RNA测序(scRNA-s
单细胞分离用于单细胞基因扩增介绍
单细胞分离连接不同管径大小的毛细玻璃针,可分离捕获各种非贴壁状态的单细胞和微粒等,如细菌、酵母、藻类细胞、植物花粉、原生动物单细胞、悬浮细胞、血液细胞、免疫细胞、卵细胞、各种悬液中单细胞及特殊标记的单细胞等。 单细胞分离用于各种类型的细胞分离培养、纯化、检测;获得单克隆细胞;用于单细胞基因扩增,用